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" were n‘ét'r incorporated in a previougly printed work. (See Mathematics
' _'a._n_g')Plausible Reasoning, Voli 1, especially chapters III, VIII, and
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_ "Mathematical Methods’in Scieded" 18'the tifle of ® cowse. .. " ~*°!
which I have given several -times at Stanford ‘Unifersity to teachers, Y,
or prospective teachers, of mathematics and science. . The.following .
peges-present those chapters of the ‘course-=the. conténts of which' ' .

[IN : .
w .

‘The following presentation iz due to Professor Leop Bowden .of:
the University of Victoria, who carefully followed*in the substance
of ‘& taperecording.of thé course, but added seversl details and several
plcturesque sentences of his own. Some peculiarities’of the oral .
presentation have been preserved: . a.certain broadness and some

<

One of the:essetitial’ tendencies ‘of tHe course is to point to -

the history of certain elementary Rerts of sélente as & source of

efficient teaching in the classroom. Several historical details:

are somewhat distorted: sgome” intentionally, to bring them down to

the level®of,the high-school, biut a few details may be unintentionally
distorted, I am afralds .A’careful confrontation of the . pedagogt~

cally appropriate with the historically- corfect version would be

most desirable, but.wes not feasible withir the limits of time and ,
energy. at my disposal. . A few non-historical niceties are alsg some- - ..

what roughly. treated, for fgasons' of .space and pedagogy. i
I hope that the following pages will be useful, yet they should

_not be regarded as a finished expression of the views offered."

. I wish to express my- varmest thatiks to_Profe_sséi" Eo_vderi.
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Ly e INTRODUCTION. © ... SRS
J.} B v ‘ '
In these lectures we will discuss: p
(l) Very simple physical or pre-physical problems, problems that
~ .. .comd be discussed at the high school. level ,
' (2) The relation of mathematics to science anﬂ of science to math-
‘ -ema.tics._ This relation is a two-way street 'I‘hough more usual,
) ‘ it is not always the case that mathematics is applied to science,
. also there is traffic “in the opposite direction. "Good driiging ] :
N ‘takes note ef the oncoming traffic.. ° A ' S
(3) Elementary™ calculus, for. without .some calculus -one's idea of .
- how mathematics is applied to science is necessarily inade- '
! ' quate. ' : o : T
' Also,‘ as their title indicates, these lectures will deal wi'th my
: ideas about methods. First, let me say that there is no one teaching
method which is the method /(:here -are as many good methods ‘as there are
o good teachers. To. teach effectively a teacher must develop a feeling
ofor his subJect ‘he cannot make ‘his students sense its vitality if he ./ '
. - does not sense-it himse1f~. . He éannot share his enthusiasm when he has .
no enthusiasm to. share. | _How he makes his. point may be as important as -
the point he makes; he must personally feel it t0o be important he must
N develop his personality. v - : -
. B -In my presentation I shall; by and large, follow ‘the gepetic method
The egsential idea Qf this method i's that the order in which knowledge '
"'has been acquired by thé human race will be a good order for its aequi-
> gition by the’ individual The sciences came in a certain order, an order '
determined by human inter/est and inherent difficulty. Ms,thematics and ) |
astronomy were the first sciences really worthy of the name; later came-

' ’_~mechanics y optics ) and so on, - At each stage of -its development the human.

' race has had a certain climate of opinion, 8, wéy of looking, conceptually,
~the _world ’I'he ‘next glimmer of fresh understanding had to grow out of |
already understood 'I‘he next move forward halting shuffle,

% .well the race could then walk. As for the ‘human :pa.ce, so" for, the human .-
.child_ But this is mot to gay that to- teach science we must repeat the: ‘.

. . L v Lo o " ) .

O
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thousand and.one errors of the past each ;11 -directed shuffle. It is
to say that the sequence in which the major. strides forward were ms.de
The genetic method is. a guide

is a good sequence in’ which to teach them.
3 to, not a substitute for, Judgment. , ,"-' C .
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'.111 The'l‘unnel S

'neither. Nevertheless they devised a method and actually suc9eeded in

gaapter 1 From the History of Astronomy: Measur'ement"'

and Successive Approximation

" Section 1. _ Measurement

Astronomers have measured the distance of the Sun fidu the Earth ;-
even the distance of the fixed stars. How dia they do ¢ "Not by )
strolling through puter space with a measuring rod. The distanca of
places” that cannot be reached is calculated fr?m ‘t‘fhe distanc‘e of places .
that can be ‘reached. E[b measure the stars we-get down’ to Eart_h ; cosgo~
logical survey has a terrestial bese. _ o .
'We'begin with a terrestial problexn. ' Due to increasing population

§ 5 a certain city of ancient Greece found its water supply insuff]icient, so

that water had to ~be channeled 1in' from a lake in the nearby mountains.

© And since, unfortunately, a large hill intervened there was no alterna-

tive to tunneling See Fig. 1.

\

Source of .
Water Supply

. Figure 1 v

. . N . . \ - . . .
Working. from both sides of the hill, the tunnelers met in the middle as -
planned. - ¢ v - - v . o

How did the planners determine the correct direction to ensure. that '.

the twd crews would meet? How would you have planned the Job? Rememb&'

that- the Greeks could not use radio signal or' telescope, . for they had -



making their tunnels from both?ides meet somewhere 1nside the hill

( Think about 1t? . . S o

ERIC
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of course, had not the la.ke been on a higher level than the ci'ty,
: there would not have been gravity to ‘make ‘the water flow through this
<-;aqueduct But to -better concentrate on the cru.x of the matter, 'let us
neglect the complication due to difference- of levels. Essentially the .
pmblem is this, How d.o we determine the would-be line of sight betveen -
two coplanar points C and S .when a hill intervenes? See Fig ﬁ2.'° ‘

Ce

oot . . — ’ /v .
Here we have =4 problem of applied geometry. How are we to construct’ 1-

n ,the segments cer, SS' of the stra.ight line CS without ,joining c' to

S? It is not’ permitied to traverse the shaded area. Yoo ?
_ Tl'rat which cannot be connected directly can only be connected in-
directly.. Let 0 (O is for Outside) be a point from which bqth :C and »

S . are observable Joining "0 %o - C and to S we have the situation S
J { '
\ Of Fig 3 . : " | ) " 1 o o o



(b

‘.Figu.re-_B ' o .

urely this diagram must suggest application of the geometry of the

.triangle. And how do we specify a triangle?- By measuring its angles and

. sides. And what angles are measurable in Fig. 3? 'l'he angle at O .can _' s
. be measu:red for C and S are both visible from 0. . But what about -
_the angles at C and S'Z We cannot measure LOCC' since the hill inter- :

venes between 'C.. and S, a.nd therefore the direction of CC' -is unknown.

For the same reason we cannot measure AOSS' or the length of O0S, - Thus -

the measurables are O0C, oS . and the angle at O - two sides and included
angle -—-sufficient to specify AOCS uniquely. *

Suppose that OC is found to be 2 miles,. ;0873 miles, and ACOS
o )

'53 .. We can draw a scale model with, Bay, O 10, 20, inches, 0,8, 30 in-

_ ’ 171
Cher’ of course, with the included LC:LO:LS:L =. 53 + Ang since similar ‘

trisgfffes are équiangular, it follows that £0CC! (i.es, £0CS) = T
£0,C,8,, ‘and LOSS' (1.e., LOSC) = 40 s:L 1 . See Fig. b, The problem is -
solved o - .

A T )



P

-\,a

Figq;e y

The alert reader will have a.lrea.dy appreciated thet the 1ength of
"the tunnel, and consequaently the a.mount of’ tunneling for each crew ig - .
. easily deduced. The directions of - CC' and SS' having been detennined,
their lengths -can be mea.sured from the length of C S in-the a.uxilia.ry
triangle the length of CS cen be deduced by siniple proportion' the -

. length of the tunnel is the dif‘ference bﬂaeen the 1a.tter and the sum of’
. CC' .and ss' ' '

PR}

14



1. 1 2 Measuring iriangulatin
Next a word about the importé’r’practical business of making measure-l’

.'. ments. HQy do we measure an anglei“QWe neceBBarily do it the same way

" today aB the Greeks did it two thousand year& ago. The modern theodolite
'.'; effects greater Pre°1542E6?4t is better built, the principle is no- better,
it is’ the same. Its essential is a protractor What is a protractor? -

An arc or: the whole circumference of a circle divided into equal parts.

See Fig 5 '

~y

. . . . ) Figure 5 . . . .bl..

InAchanging our 1ine of sight from OC to 0s, it is rotated.throughia
'certain number of Bubdivisions of the circular arc. éince the amount of
turning is proportional to this number, the number is.a measure of ZCOS.
It is conventional from’ Babylonian times to consider a complete revolu-
"'tiou to be 360 degrees, and therefore to divide the whole circumference
into 360 equal parts. When greater accuracy iB required and the protrac-
tor is large enough to allow further division, each part 18 subdivided
into 60 parts to read off Bikpieths of & degree (minuxes),tghich? in turn,

5 -




/ I ' ‘.' //-

. must be precisely ki
- C and :8 wiﬁh the

mounted at 0. A mddern refinement is the magnification attained by mak-
ing tﬁettube telescopic. See Fig. 6.

. Precision is achieved by sighting the objects
id of a Cross hair at the end. of a cylindrical tube

£ . Figure 6 -
. . . . Col : . . A

.-Yet no‘matter how refined the refinements,.error is'inevitable. So today'
surveyor Just as the surveyor “of two thousand years ago, makes several '
measurements .of an angle and takes: their averageit The measurement of gn
angle remains a fundamental operation. '

; The reader, who in trying his hand at amateur carpentry, attempts “to
make: a picture frame without the aid of a miter box knows to his cost

how difficult it is to make the fourth corner fit. His sad experience

may tempt him to suppose that accurate meagurement- of 1engths is easier>

than that‘offangles. No, when it comes to surveying the measurement ofl .

an angle.it is a relatively precise operation. To establish a base line )

a mile or two 1ong is a difficult (and expensive) operation. It has to

be made completely flat. A further difficulty is that measuring rods or




O
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. chains Change length vith temperature. Another difficulty is that the ;
: line must ‘be straight. The men now engaged in the construct'rn of the

two-mile-long linear|acceleretor at Stanford could tell you ¢hat measur-
v o

When a base line AB is established, the sighting of some prominent

distant object C, such ‘as & church steep]:e or mountain peak, enables

‘ing angJ.es is much easier than constructing a straight line. < 4
.o J(L

angles ABC, BAC to be measured -and hence’ AC, BC computed ‘by }:rigonom- .
etry. These 1n turn can be used as base’ lines from which to. Sight other ‘
' prominent topographioal points Cy) 02, leading to. the use of ACl, CCy 5,

002 BC'2 as further base lines; and 80 on. See Fig 7 ‘ ".-'

g o . Figure7

L

In this way s that is, by what is. called tr1angulation, a whole country

or continent can he surveyed. T

l 1. 3 How Far Away is the Moon?
From the Earth we turn to the heavens. How are we to measure the :

: distance of the Moon from the Ea.rth? Since this distance cannot be
measured directly, it must be measured indirectly, it can only be deter- ~

mined by calculation from accessible distances. So we f ed a known base -

line, Basically we have a problem of triangulation. Can the problem be
related to that of OABC of Fig. 72 Consider Fig. 8.

\




)

- . . Y

Figure 8. -

N
.t

Yes, if we can determine the straight 1ihe’-distance' AB and angles .

a' and Bt Granted that the Earth is & sphere, if the distance AB

‘on the Earth's surface (the arc length). has been: méasured ‘and 6 1s

-

ously. : ! y o

known, then OA can be calculated (or, conversely, if the redius " QA
“i8 knoyn, then 6 can be calculated) Hence by consideration of the
isosCeles AOAB; the straight line distance. AB is computed. But how is

‘be. known ’when G is known. . But what is @ 7 a. is ‘the angle which the
line of sight to the Moon makes with the vertical at A, And how is the .
- vertical determined? Yes , by suspending & plumb’ line. Similarly}' p* is
determined by first measuring B. The problem is indeed ‘releted! Note
‘that a base 1ine is indispensable, so that before the Greeks could measure
the distance of the Moon from the Earth they had to know the shape and
the size (i.e., redius or circumference) of the Earth. )
' One obstacle remains, the Mooh moves relatively to the Earth. I B
18 measured at - B af‘ter a was measured at A, then B-1is not the angle
to the vertical at B ma.de by the Moon ‘when at C it is the angle made
by the Moon from.some subsequent position - Say C' Instead of.a tri-
.angle'with vertices 'A; B, C, .we are confronted with & quadrilateral N
with vertices A, B,.C, C?, and the method has failed' - For-triangula-
tion C, C' must be coincident; o and B must be measured similbane-.

to be determined? AOAB ‘cen be computed from -AOAB,- 8o. that @' will . -



But how is the measurer ab \B tq know when the measurer at A 1is A
‘-measuring? To signs.l to a second measurer just a few miles awvay & lantern
,would serve; yet for accurate triangulation suchea short base 1ine would .

not. Remember that AC, BC' are each.some téns of thousands of miles.

Ideally-a base line should be of the same order of magniftude, ‘at least it .

- must be hundreds. - Remember also that the Greeks ‘had no radio with which
to transmit signals, nor had they “accurate watches (just clepsycﬁ‘as)

"._Doesn't their problem seem insuperable? Yes; yet they surmounted it.
"How? Iet us for the moment indulge in wishful thinking of a particularly
. whimsical kind what a pity the Greeks couldn't g)eZ{he Man in the Moon
to cooperate by signaling! . His' signal would have been visible at A and
B simultaneously Put less’ fs.ncifully, measurers had.to wait for’ soge ’
happening on the Moon visible from Barth, What happening? A lunar
eclipse. See Fig. 9 S . \\

|
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Jrl.l L Tb Teach Triangulation
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The eclipse provides four distinct events, observable simultaneously from
A and: B: (1) the beginning and (2) the completion of the Moon s entry
of the Earth's shadow, {(3) the beginning and (h) the completion of the
,Mbon 8 emergence from the Earth's shadow. Had you appreciated how useful
eclipses are? Compare the idea here with that of © in- Fig. 3.. Isn't
human ingenuity ‘a fascinating thing? S o ':-ﬁ .

~Let us for a moment turn from triangulating to teaching. Why should
your typical student be interested in. your wretched triangles? Hasn't

'_he already genuine interests? Baseball television, and the girl next

door? After all he ‘is only human. ﬁEciseiy because he 'is human he
has human interests --and human curios . Why not introduce the subject
in the way that must interest him? Untll he has .developed to your level
of sophistication ‘he cannot share your sophisticated interests. He is to
be brought to see that -without knowledge of triangles there is no trigo-
nometry; that without trigonometry we put back the clock millennia to .
Standard Darkness Time and antedate ‘the Greeks.

Ca .
\

Section 2, Astronomical Measurements

. 1.2.1 Aristarchus of Semos

Aristarchus; a famous Greek mathematician and astronomer, was born

'. on the 1sland of Samos about 310.B.C, and died about 230 B.C., §0 that x

he was a contemporary of Euclid. “His fame rests on his heliocentric theory,
the theory thet the Earth and planets revolve in orbits around the. Sun.
Perhaps "theory is too strong a word, for his proofs were - weak ; yet it~
wes a great idea, an.idea redeveloped centuries later by Copernicus.
Although Aristarchus did not- know the distances of the Moon and Sun - *
from the Earth, he was able to’ estima%e their ratio. _His method depends
upon a most ingenious idea.‘ To better appreciate his.ingenuity, stop and
ponder awhile. What method would you use? His: ‘idea is germinated in an_
understanding of how the" phases of the Moon occur.

Why do we sometimes see a full moon, at other times a half-moon: and

- when there is a new moon, nothing. at all? Because the Moon has no light
" of its own but dépends upon the Sun for its: illumination, only one half

of its spherical surfacé ig 1it up; the other hemisphere is unilluminated.
(More precisely, granted the. natural assumption that the Sun is a very

| great . -distance from the Moon, the beam of its 1ight which illuminates the

)
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o Moon will be pra.ctica.lly a para.llel bea.m and 80 1ight up very Little more
thnnéne hemisphere.) See Fig..lo o . e

v o

e

An observer at Pl (ides.lly transparent so as not to block any ef"the N
Moon's sunlight) would see an Illuminated hemisphere, ie., fu;Ll moon.

At P2 what does he see? ‘His field of vision ‘now includes less of the
illuminated hemisphere and a 1itt1e of the unilluminated ~- and therefore
invisible - hemisphere. He sees the Moon in the 1s.st quarter.v At P3?

At P3 his- field of vision includes but 1itt1e of the illuminated part
~.s.nd much of the unillumina.ted. Since only the illuminated is visible

he sees the Moon in the first qua.rter.‘ At Ph his’ field of vision in-
cludes none of the illumins.ted pa.rt ) he sees no moon at all -- the begin- .
ning of the.new aoon. - In what position (relati\e to. the Sun and Moon) '

- would he see precisely a half-moon?.

: ?.',-" N g . % ‘f"
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_ Is ‘it not visibly obvious that a.n observer will have one half of the -
illuminated and- one half of ‘the, un:Llluminated hemispheres in his field of
e -vision, and conséquently wi:li see a" half-moon, only when he is &omewhem o
. on the line EE'?.In short referring to Fig. 11, an o'bserver on Barth ™ - "
‘sees’a ha.lf-moon only when A‘JMS is ‘a right a.ngle.

: o | . : o l&(oon)»A

L - Figu.reli ‘ ‘

s

Under good atmospheric conditions the’ Moon is sometimes Visible ih
“ the daytime, especially hear sunset and sunrise. So, sometimes both Sun . ’
and Moon are visible. , So, sometimes (though less often) both Sun and- B
Moon are visible when thé phase of the Moon is half‘-moon. . S0? ‘Measurg '
ZMES. on such an occasion, of course. :This is what Aristarchus did.

o First notg ‘that without any measuring at all, ’ since the hypotenuse

of a. right-angled triangle 1s the greatest side, we may infer, as did

‘the Greeks, , that the. Sun 1is farther from. the ‘Earth than the Moon. Next

" ‘note that when o 1s measured, the third angle (the complement of a)
‘is determinate, so that the shape but not the size of ABMS © is known. T
Consequently ) although the actual length of any side is not determinate,

the ratio of any pair is. It immediately follows from “the definition o

" of cosine that the ratio of the distances ME - (Moon - Earth), SE - (Sun -
Earth) isgiven'b'y ’ o -

ERIC
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"'\ Having measured @, Aristarchwus‘had to compute cos @; unlike us ‘he

_had .no tables to refer to._ His- result ‘was grossly inaccurate for two-

- reasonsa a .. is nearly 90 where a’ ll error ‘is critical. Second Just

by looking, dﬁcgfhamlot say when precisely the Moon s phase is. half—moon,

" there 1s a more-or-lessness about the observation. " Nevertheless, A'ristar- -

chus had a great idea. Since the Sun is vastly more remote than the )
‘Moon at hal f-moon, and' since the size of the Sun and Moon as viewed from

the Earth remain sensibly constant, it.is a safe inference that the Sun

'fihfat“all*times]farthermfrom,thegEarthrthan the Moon. . ..

i.2. 2 Radius of Earth' Eratosthenes .
Earlier, in discussing a more interesting question, that of the dis-

tance of the Moon from the Earth, we saw that a necessary preliminary is
) determination -of thet size of the Earth. So the next important question

is: What is the radius of the Barth?:

In ascribing radius to the Earth we commit ourselves as to its shape.
What sha.pe? Yes, spherical.” Is this precisely correct? No, we now lmow »
that the Earth is slightly flattened at the poles; it is more nearly an
oblate sphemid.( But to treat it as a sphere is. a gobd approximation. '
Good appmx'hnations often lead to better ones. .

termination of the Earth's size was Eratosthenes' outstanding ,

achi ement. ' As well as a geographer and astronomer, he was librarian’

_.+of the famous library at Alexandria, then the greatest library of the

civi'li'zed' world. He lived from about 280 to 195 B. C., but ‘these. d.ates B
are problematic. With the subsequent dispersal of this library there
is np extant Aleitandrian Who's Who in which to look him up. Although
his dates are in doubt, fortunately his method is not. And 80 we raise
__the inevitable question: How did he do it? ’

T The circumstances are. as follows. The River Nile floi{s approximately
from south to north, B8O that the shortest route from thei.éi‘ty of Syene -

A
(nowadays Aswan) far up .the Nile to AéLexandria in its delta is a great cir-

cle route. That is to say Syene and Alexandria 1ie (almost) on the same

meridian, a circular hoop or belt Joining the poles and ;passing. through
Syene would also pass through Alexahdria. " Moreover Egypt is a civilized

country, there i a. road between Syene and Alexandria, and its length is |

_ known. It is 5,000 stadia. See Fig. 12,

- :

>
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. are touched by sunlight at noon on the longest day of the year,- i.e.,
; that there the sun- is then directly overhead. So at noon on a midsum- .
2 ,'_mer s day he ‘measured the Sun! 8 =:anlination to the vertica.l at Alexa.ndria. :
i 'Of course he needed no wa.tch to tell himself when the Sun's inclination to
,'the vertical was g minimum; to the contrary he used the Sun 8 minimum

- Figure 12 "
In short ’ the circular arc AS is 5, 000 stadia. If it were known wha.t
angle 6 at the Barth's ‘¢enter subtended this arc, then it would ‘be

.known what fraction of the Earth"s circumference AS is. - The rea.l-pr'o-'-'--

blem is to determine 6..

Eratosthenes knew that Syene has a very deep well . whose waters

4

inclination to determine noon., He found the a.ngle to be 7, 12' And sincer '

o "the Sun is so remote that its rays are sensibly pa.rallel, the, circum-
- stances were as is illustrated by Fig. 13 g o Con ,!‘

e
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o A

. 8o that . i A =712 =L ofa.complete revolution. :

, o | 360 %P 50
Consequently AS iSaésth of Earth's circumference But AS is
H5 000 stadia, so that the Earth's circumference is 250 000 stadia and its
: ra.dius . ’. ' .
' O —:—250 900 ."'sta.dia '
- S . 2r .
Unfortunately we do not- know which of the several stadia used in an-; -
h . tiquity is the unit empioyed by Eratosthenes.' A stadium is 600 Greek feet
but the' Greeks had several feet .for example, the Attic Stadium-is 607, En-

glieh.feet, the Olympic, 630,8 ft. If we take the former, the radius‘of»the

'

v
®

" Barth becomes y ; o o
: , 20,000 60T . _ ) 600 miles.

o Ta o X 53 . R
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‘ Nowadays the accegt'ed figure for the Earth's equatorial radius is 3, 963

' _the pigmy a’ giant ‘who. spanned the Earth. IR L e

~ .m:iles, the polar radius, 139 miles less, .. .° \" e L ‘
'I'hat Ezato‘sthenes' result is& inaccnrate does not really detmct from .
; the greatness of'his achievemept It is ‘his method that excites Sur ad- ﬂ

e A miration. Would not a giant measure the Earth by encircling it with his

arms to compare its circumference wit'h his span? And what did our little' R

pignw Eratosthenes do? At. M.exandria at noon on a. certain midsummer e
day long: ago "’he observecL the angle of: the shadbw casj. on- his protractor L
by a little s‘tick. A mere shadow and an idea is ‘the substance ths.t made

. . i

. I - s

» I

“123 Rival’ @osmologies RREEEN ST i‘?’ L

R 'How, without a watch d/p we know what tinm it is? Yes; by looki‘ng

R at a sundial.; The cast of the Sun's shadow across the dial tells us the .

- time.—«. Despite the fact that' a watch has two hands althqugh a sundial )
has only Lhand." a watch 18 in effect & sundial. Think about i,
The g ‘g or position of the minute: hand (read in conjunction with the -
position Gf the hour hard) is a substitute .for the Sut's shadow. A watch:
in telling us our time. -; to be precise, local solar time - indicates our . .

- 4‘,' position rela?:.ive to the Sun. We cannot see in the dark, sure]_y primitive

N

- man arose to work with the rising up and retired to rest ui*th the going‘

e down of the Sun,. Life was govemed by nature's clock. o : " '\

"¢ And how do we measure a ? Yes, “in years. _ But what is a year? T,he

e 't'ime that elapses before the rth is again in the same position rela-hive

to "the Sun. And how do .we. deteﬂline sameness of positiori? By reference .'
to the framework of the~ fixed. stars. As. the position of Earth changes
relative to Sun, ‘the days grow longer, then shorter, then. longer again. _—
There is a cycle of seasors -- of the time'to sow and the time to reap. _'I'he[
calendar is pur.. recognition of this period.icity. . . S e
~ Are not our lives regulated by the clock- and the calendar? Is not

_ our existence dependent upon the- rotation of the Earth relative to the Sun?

“~~Without the Sun there/would be pefpetual night neither day nor week®nor ., 'A .

. month hor year;. neither a time for sowing nor a time for reaping. The . ','. '
fate of all mankind dependent upon the heavens, is it not a natural step .
to suppose personal destiny to be govemed by the stars? Could ot greater .f
knowledge of the .heavens lead to k_nowledge of. our ,individual destinies?
Although to date astrology has not been a successful appl%ncation of. as- )
trononw, it served a purpose. It gave additional impetus to astrononw

E to such solid practical .reasons for the study of the stars *as the deter- <
mination of the calendar and a éetehod of navigation, it added its \own. \ T

a

T S Y
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',Evidence of an especial regard for the dering stars-- the planets - i8

.embedded in our language Sunday is- the day of the- Sun Mondsy. the - day

. ::of the Moon; Tuesday, v,ia,.the French, Mardi, the day.of Mars; Thursday,

via Jeudi,_the day of Jupiter; Friday, ‘vie Vendredi the day of Venus;

-and Saturday, the: day of Saturn. .. - . : -

v
For primitive man nature was a malignant uncertainty. Even for the

.Greeks, behind every bush and underneath every stone there’ lurked a god

.of unpredictable caprice. The- paths of the.planets gave the comforting .‘

_ assurance &f a glimmer of certainty in’ an uncertain world, These ‘wander-

ing stars as the Greeks called them -- in opposition to the fixed stars--‘

-appeared to be predestined to folloﬁ'fixed paths. Planets were observed
j-to reappear in the same position (relative to the fixed stars) at regular

intérvals.' Despite the general fortuitousness of nature, a few ‘events
were predictable, their occurrence could be depended upon. In‘studying

v~the applications of mathematics to astronomy ve see the first attempt to

' vibw, e new view is the genesis of science.- 2

discover uniformities in nature. The stars gave man- his first glimpse of-.
8 great idea -- the belief that there are uniformities to be discovered.
It is hdrdly possible to exaggerate the importance of this change of
Ar stotle (38u4- 322 B.C.) argued that'a planet must move with uniform
motion in a° circle.. What is his argument? That the planets are neces-

' sarily perfect bodies and therefore spheres, and because perfect must

move with perfect motion, i e., uniformly in circles. You smile, his;
contemporaries did not., Aristotle never caused a smile in- a, thousand

years. His dictum persisted without a murmur of contradiction until the

© -Middle Ages. The founder of zoology, of meteorology, of logic had spoken

Tﬂit was left to lesser men merely to follow in-the footsteps of the master

. and quote his authority. - *'F . P

ce —.

Circular planetary orbits had been proposed before Aristotle, after
Aristotle they were obligatory. The question was' About what center?

a

- Tnat. the Sun. moves. around ‘the Ea a natural impression, and the

theory of Hipparchus (160 125 B.C. ) #8loped by Ptolemy ( % 130 B c ),
._that all the planets move ‘arourfd th rt

h, was generally accepted. . .

Observation did not precisely ffgrthe theory. So, in the Greek -
view, if a planet did not move in a circler then its motion must be a com-
bination of circular motions.. See Fig. 1k,

.




. Figure 14

A ' o ' o ‘
.Here 1s illustrated a combination of two circular motions. As - P. moves .
.around the-circle of center Q, Q moves around the circle of" center C. -

:.The fbrmer circular or cyclic path (relative to Q) is said to be an
) epicycle of Q. Yet such a combination did not precisely £it the facts,

" 80 epicycles of epicycles were “tried, See Fig. 15. ¢

~
~



Figure 15"

. P

~

Here is illustrated a combination of three circular motions. As P ihoves

) "around the epicycle ‘of center Q ‘and ‘g itself moves around the epit P

of center R R itself moves around the cirele of center C. This

point is of importance for. the understanding of science; 3 by sufficiently
-complicating the hypothesis we gain enough f’lexibility to fit it to our
: ;observational data. Fitting the data by an uncomplicated hypothesis is

© much more interesting. e :
We recall a rival theory, that of Aristarchus of Samos. His thedry . -

was that the Barth and planets move in circular orbits around the Sun. '

" Although the ma.ss of then available observatioml data fitted his theory
' fairly well, it was nevertheless universally rejected, it was. rejected by
_ Archimedes -(267- 212 B.C.), the greatest ma.thems;bician, physicist. and
" riventor of antiquity. o _ . -'- .

) Why was it uniVersally rejected? In part, no doubt because of.

s A
s

.f

ah
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Archiinedes..' re.ject_'ion; We must remember that pride and pre,judice can’ in-

I' fluence our thinking. . Earlier, e asked:. How far is the Moon from the Earth?
We did. not ask: How far is the Earth from thegMoon? Both questions must - have
the Same answer, so why the" former ‘but not thel’ latter question? When we travel
we necessarily start from where we are.._ Is not the first a mere natural for— '
mulation? When fogbound in a rowboat. is it not more natural to suppose the ‘

« other fellow ] boat drifting past ours than ou.rs drifting past his? -Is not an’
*Earth-centered more natura.l than a Sun-centered theory? .

Fig. 16 illustrates Ptolemy 8 universally accepted geocentric (Earth-
centered) theory; Fig. AT ==-Aristarchus' universally re,jected heliocentr:l.c
(Sun-centered) theory (in which the Moon orbits the Earth)

Ptolemy-'s ° " e - _ -
Geocentric System. T R o e

o o E‘-igurel‘6( -.
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Some seventeen centuries later, Aristarchus' heliocentric system was
; ' rqdiscovered by” Copernicus (lh73 l5h3) Tt was still de rigueur to quote
o authorityun-preferably Aristotle-- and as Aristotle ‘eould not. be quoted

in favor of these matters, Copernicus was pleased to quote Aristarchus.
_ (Later, however, he deleted this quotation. ) As he knew. Aristarchus' work
. it is more correct to say that he redeveloped rather than rediscovered

the heliocentric theory. ‘Patiently and pertinaciously,\he checked it .

against a vastSaccumulation of his own and other astronomers' observations.

e

Although a man of immense intellectual courage as well as energy, he was
very careful. Knowing that people do not like to have their old habits
of thought or the habit of not thinking at all, disturbed he" delayed
publication of his findings some thirty years until -he was: upon his death
bed. With characteristic caution he did not claim that - the Earth and

s planets do actually move around the Sun, he’ contented ‘himself with show-
ing that a heliocentric hypothesis works better than a geocentric oné it
requires fewer epicycles. '

'ﬂ. .-
'12h TheOrbit ofVenus.‘p_» " S e
o An earlier theory was propounded by Herakleides who lived in:the hth
"/ Century, B.C. He studied under Flato' and probably under. Aristotle also.

/ His theory is an intermediary between ‘the Ptolemaic and Copernican stand-

points. According to Herakleides, Mercury and Venus moved in circles
around the Sun while the Sun ‘1tself and .all the other planets moved in
eircles around the Earth, . . . ¢
S The bright star ‘eften visible at ‘the setting of the Sun 4! known as
the Evening Star, the bright star ofben - visible at the rising of the -Sun
‘1s known as the Mbrning Star. Although these names occasion no surprise,

'

surely there was great surprise at the early discovery that the EVening )
‘Star and’ the Morning Star are identical. This star is Venus.. Its-wander- i
ings, while exhibiting some regularity, were perplexing. Long-term obser- . -
vation showed it'eventually to reappear in the same place (relative to
the fixed stars), it was at all times relatively close to the sun, yet

' sometimes appeared to .be moving rapidly in the same direction. as the Sun f.
and at others slowly in the opposite direction. ‘But - surely perfect bodies,
spheres, describe ,perfect figures, circles, with perfect, uniform motion.’
Whatever could be the reason for this apparent discrepancy? A glance at

Fig. 18 makes the explanation ixmnediately obvious.

- ° s
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. Venus )
Rapid

Figure .18

“The. trouble with hindsight is that it blinds us to the brilliaxfce of. fore-
sight.' The explanation is Herakleides' ’I'hat we now know that Venus® '
orbit: is not exactly a circle nor its motion precisely uniform detracts .
.nothing from Ris ingenuity. ’I'he astonishing thing is, that his hypothesis -
fits the facts 80 _closely, - : e S

' The good first approximation accuracy of Hera.ld.eides hypothesis makes
» :‘it reasonable to ask What is the radius of Venus' orbit about the Sun? - S
This question raises another question: How are we tqdetemine this radius?
. How would you do it? Well, begin with careful study of Fig. 19. .-

| Figure 19 . -




‘el

. Observe that the angle a, tha.t the straight 1ine Joining Venus to '
-.the Earth makes with SE cha.nges as’ Venus progresses in her orbit In .
particular, note that

. ' ks Ul R
' Ly = L5

. ] - t

i R

\ : . . &Evm, = ASEVm.

In short, a increases “to.a maxipmum when Venns is at V (m is for
maximum) and then decreases. Where is V ? Consider the successive '
chords vlvl 3 V2V2 B V3V3 3 they are progressively shorter. Cbviously ~
’ '(EVm is the limiting ‘position, tangential to the circle. . Consequently o
is & ma.ximum, say a o when A._ZSVmE _is a right a.ngle. Consider Fig. 20,

. i“igure _20-
‘Since " SV, 'SV are radii of the’ eireular orbit’ |
sv' _ Sy e
_ L E S ®
g ‘and. s.ince. IZSVmE of ASVmE i a right angle

g2

. . ‘ = sin e
consequently

o= sinqm.

ga

3 e-,',: - 2
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- be. done by using. the most elementary geometry and trigonometry?

The radius of Verus! orbit is sina  times the distance between Earth

_end Sun. We do not, of course,. have sufficient data to determine the

actua.l distances, only their ratio. Yet is it not surpris;.ng what can

To apply our formula we. require the actual numerical value of a L

* How are we to obtain this? By observing Venus when at V ? But how could

_we know when Venus is there? To say "when @ is a maximum" is to beg

the question. . The point is that we cannot obtain a. by a’ single observa--

. tion. We cannot have this information for nothing, we must earn 1t by
regularly making medsurements at sunset.or sunrise day after day.. Without
~a sequence of observations, how could we tell when a ceases to increase
and begins to decrease? Advances in science-demand tenacity—of-purpose
‘a8 well as bright 1deas.‘ - _ )
. _ S »
ﬁl 2. 5 Tycho Brahe and Kepler T , . T,
_ 'I‘ycho Brahe. (151#6 l60l) was. a wealthy Danish nobleman who had much
land Jany gerfs, and a qqarrelsome disposition. . His dispositimhen he.

was .a young .man resulted in a duel, the loss of his nose, the acquisition B

of a. silver substitute, and a marked propensity to shun society. No .

doubt this seq/ence of events increased his attraction to astronomy (not

a gregarious seience). Be this as it may, he had an obsession for con-
tinual: and- exact observation of the stars, and this. obsession d.s the basis
‘of his’ fa.me. : No, he dia not propound any new theories. Being rich, he
was able "to have Constructed, with utter disregard of the cost giganticy:

.well-made instruments, that set a new standard of observational accuracy.

E No.wadays » with accuracy,a sine qua non we overlook this vital contribution

. of. Brahé to astronomy and the development of the scientific attitude. _
- Kepler (1571 l630) was very poor. In his day there were no chairs .

(.
of astronomy, only the patronage of princes. Such patronage was often

given for astrology ral:her than astronomy, and Kepler earned his meager
‘living by the former,’ thereby. enabling himself to study the latter. “As—
he remarks, astrology is the daughter of astronomy, and is it not right
that the daughter cares’ for the mother" - —
.+ © He' was a man of genius,” .His work marks the transition between medi-
_eval and modern outlook. ‘For this reason he is called, by Koestler, "The
Watershed" in a book of this title. From Kepler the history of thought .
-flows back through a hodge podge of emerging scientific thought astrology ’
mysticism and superstition to Babylonian times, and forward to the modern

‘ outlook. His own writings are a mixture-of both. Not havirg the money

. to buy accurate (and consequently expensiveBirrstruments with which to
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'make his own observations, he finally met chho Brahe and inherited his
vast. accumulation of accurate data, data accurate to a.degree that the
'Greeks would have found incredible. ,thler's ambition was to describe
_nprecisely the orbit of Mars.. He-; tried one fruitless combination of
epicycles- after another. At last after fourteen laborious unsuccesses ‘
“he came- to the conclusion that the orbit is neither a circle nor a combin-
-ation of circles. It must be something else. Kbpler‘s conclusion had
astounding novelty, ever since Arlstotle s dictum some seventeen centuries
earlier, epicyclic motion had been ‘taken as axiomatic., His breek with the :
'iAristotelian tradition was the crossing of the watershed.

With industry to match his courage he continued to grind out more .
and more calculations to~test other hypotheses, it was’ not until nearing
the- end that the 1nvention of logar1thms eased his labors. Ultimately,
he ‘hit upon the. hypothesis that Mars moves,with non-uniform motion in an -

. ellipse withbfhe Sun.at,one of its foei.: Heretieal Utterly heretical.
'I, How could the Sun be at one: focus rather than the other? * How could a
'planet move with non-un1fonm motion? How could the universe be so im-

' possibly imperfect? Observatlon fitted hypothesis like a glove.,
o The ideal of Euclid's Elements, that the theorems are necessarily
consequences of the premises, 1s apt to mislead us into supposing that

the development of science has been entirely ratlonal.' Nothing could
be farther” from the truth, Nowhere is irrationality more clearly'ex--‘

v hibited than in the history of astronomy;- nowhere in. astronomy is preJu- :
'dice against fact more visible than in the tenaciously ed_notion'
- of perfect bodies in perfect motion. ) S
New theory in astronomy led to a- change of world view, a new stand-
'jpoint a new civilization. Even in the pre-Sputnik erg, some appreciation
- of these developments was necessarily an ingredient of educated gommon - "
. “ o sense. Surely your students will want to know more. A good-introductory
',account is Morris Kline's Mathematics' A Cultural Approach. Another’

] is'Kbestler' large volume The Sleepwalkers, of which his. above mentioned
book,. The Watershed is’ a (large) cha *
priately . titled for as’ a sleepwa‘ er “with- losed eyes finds his way along1

This volume is most appro-

a roof top, 80 Arlstarchus conjedtured th eliocentric system his. facta
. were few; he knew so little that his eyes were closedu--yet he moved with :
a sure instinct Later astronomers closed their eyes to -facts. Here is

a story too fantastic to be fiction, unfolded with spellbinding skill.
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_By what observations? And on. the basis of what presuppositions? His
»"working hypothesis is that Mars moves with uniform motion in a circle

i

1.2,6 ﬂ!he Mars. Year.

We return to Kepler How did. he discover the precise orbit of Mars?

around the Sun. Although as we now know, this is th exactly correct
it is’ nevertheless a g&od first approximation. . ’And a consequence of this.

hypothesis is 1"1.8.1‘: Mars will be in the same position relative to the Sun
(as determined against the fra.mework of the fixed stars) at regular inter- i

vals. -The length of this interval, the time required to complete ‘one or-

. bit around the Sun, is said to be the Mars year. Kepler's_ first task .wes

T to determine this year._ :

Mars and Earth move around the Sun in the same. direction, but with _
different angular velocities. Consequently, Sun, Eaxth, and Mars become :

'momentarily collinear, or in conjunction, as is illustrated by Fig. 2.

I,
ot ¥ 4.-‘:-'.._ N

Figure o1 Y

.
ro

R

Such an event is called a synod. In gommon usage, a formal meeting of ’
f,ecclesiastics (to decide Church matters) {s said to be & synod: by natu_ra.l s
'extension of usage the coincidence or meeting of radius vectors SE, SM-

’
RS

ig ‘'also said to be a synod. = . R

37"




. {
A synod is observable with great accuracy. Prima facie, this seems

o8 strange thing to say, for when. there iz a synod Sun and Mars will not
'be .simu.'Ltaneously visible to a terrestial _observer. But remember that a
full twenty four hour day is the time inter\ral between two consecutive -
occurrences of the Sun at its. zenith, sO that, because of the uniform a |
rotation of the Barth about its axis > in twelve hours from noon, -i.e. ;. at
midnight the Sun is precisely on the opposite side of the Earth, .Thus, »

- ifat midnight Mars 1s directly in the meridian, ‘then (suppose, for sim- - K
plicity, ‘the orbits,of Earth and Mars around the Sun to.be coplanar) there

is a synod. The Sun is, so to speek,’ observed inferentially.. ' ‘
‘Flg. 21 may be considered as the dial of a celestial clock ‘but the '

- hands gre not called hour hand and m:Lnute hapd:  SE 1s the "Barth" hand. and.

4SM the "Mars" hand. We suppose ‘that T the Earth year, the ‘time for

‘the Earth hand to complete a revolution, is known 't‘,he Babylonians had

. determined it with great accuracy. If SM were stationary theh ob=-

‘_viously the hands would be ‘again. collinear af‘ter-a complete revolution of.

C v the Earth hand; i.e., TE would be the time interval _J (say),, between U
two consecutive synods ,J for synod i8 not to be confused with 'S for .

‘Sun.) If SM were to rotate in the same direction and with the same
angular speed as -SE,. then there wou.'Ld at all times be a. synod* the. in-
_terval,d between consecutive synods wou.ld be zZero, - It is equally obvious”
‘that 1f .SM were to rotate with the same angul»ar speed but in the oppo-

" site® direqtion, then there wou_'Ld be a synod after SE (and SM) 'had

»

" completed half a revolution, l.e., after time 4 2 B LIt is not- evident o i
that d the inte‘z"@al between consecutive coincidenc'es of the hands v
of our’ clock, is related to their angular velocities, i. e., that J will
'depend upon T ,and TM? Altematively put isn't ,dlmked logically _ o
betweep Tp 'and TM The crux of the problem to determine TM i specih--"
' fication of this relation between, -Ty Vel ena Ty o ' ERE
' Our celestial clcrck 1s somewhat pecu.'Liar in that the angular speeds

of the two harPds are no'c in- the proportion 1:12 although they are in a 'l'-"-

T 'constant proportion.. Does this make -any rea;L diffe.renderto the problem? “

. . RTINS
° ot Yo s

- o :No, of cOurse not._..'i' 4, L ' T Ty e

Let us, with the convenience of brev1ty, describe the position of. the'

i‘\-.l- .

hands at the synod " of- Fig. 21 -as on the initial line, What happens subse-
'quently? . Because the- Earth ha rotates faster it onecessarily completes '
Ui A revolution before the Mars hand does. Thus, when _SE” arrives at the '

B A N

initial line,' SM ha's but partially completed a revolu;ion. See Fig; 22,

s

L 3 8 & ) J |
S L.t >,
o .".. )

"ﬂ‘-"..o
e

O
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' ' Figure .
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i Ignore for the momeat: that. the s,it‘ua'hion of Fig. 22 derives from ""‘-',"
that of Fig. 21. Concentra.te on what follows on from ng. 22, The en-
o j guing ‘situation is analdgous to ‘that of & handicap rece: - 'E,.' on the .
_ .‘Earting (:Lnitial) line, is ‘handicapped by-. M starting way ahead at Ml ~
o But,- ’ thé. angtﬂ'e,‘&' velocity of SE .being greater than that of SM E must ; B
' ..sooner_o '1aterr catch up with M. Suppose this to occur when SE he.s
. "rotated thz‘bugh an angle a (measured of course ' i‘rom the starting 1ine) o
. So at the end of the race the cirCums,,gancés are as illustrated ‘qy Fig.,23. o /
. - w . /
- . //-
. ’ 1.
- . I
’ .: 2 O ! ' et A”’
. L b, ) !
: . AR
Lo . S - o
;‘. *e . - HAL U
‘ L . . ¥ d :
/ £ :
c N + . ¥ .
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While SM has rotated fyom- SMZL to " SMQ, SE has rotated through an’
R angle a from the intial Tine to . SE2 ~ Now recall? Fig. 21, . During. the
b .. intez'val between the one synod ‘and the . next SM has rota.ted from\the‘@'
a ini,tia§1 "].ine to 8142-; l.e.. has turned through an a.ngle a. “And ren;ember
_ that SE completed a revolution before the start of the handicap rac
. We conclude that if in the interval ,ef between tﬁo consecutive synods’,

g‘otates through &, “ihen SE rotates through 1360° £ q. -

. SN
N It pays to, look ‘back, Isn't this conclusion immediately obvious to ,,f ;
' hindsight? We now know the right wa-y of looking .at the pﬁlem. ‘ immedi- '
ately a:i*te\r a synod the hour hand . SE 4 forge'sﬂ ahead and sowill have to: '-' j"_.-;
" rote t\‘a“36a more than the minute hand :SM in order to catch up_with i, ”

s,
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K But, for a (clock ha.nd) rotation with uniform angular velocity the time
' of rotation is directly proportional to the angle of rotation. Therefore,

.n\. | . l d.a 'd"‘ ke (l)

Y . . o : Mg '31— . ,- (2

, And tabulatm'_' Qur: data for; Earthl., s S
. Angle rotated in the time interva,l
. R 360+a L ,’
’,
.“‘.'d.. : ];..' 1 - "‘/:
_'Hence, by (1) . SO J. .
1+ é . ' g
. STy

We have, established the 5explicit expréseion of the relation betWeen TM’ .
' d{ and '1‘ The latter being known, it remains merely to measure

in order to comnute ’ A _.,.'hl_d been meaeured by the Greeks, Kepler
:. "computed ‘I‘M o R "‘.. e e
ST .
i1.2.7 The Orbit of’Ma.rs , o . . -
. g > ‘Recalling that Kepler & a.mbition was o determine pzecisely the 'orbit . '
| o of Mars x .the alert read.er will ask How is the det’ermination of Ty . in-
SR "strumental to this e"nd'lr , ' ) : o
Consider Fig. 2& .. S E S g Do
. L r :1
- " ": N ,.,
a : ‘e &l, SR ) : 3
3 ' o &'. : " .
e R CIC) -
J2a i .
o .
* d 1 ’ ‘1. N KT
3 i
. I : . \ s, : \
i . CoL - N . . = . !
\)‘ . . - . _ - ‘p - o
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: .Fi.gure 24

When Mars is at. M, collinear with the Sun 8. a,nd a fixed star Sy e
suppose the Earth to be at El Precisely TM later Mars will have

completed en. orbit around #he Sun and again ‘he at M, but since the

" . Earth hand of our celestial clock rotate _:,f'aster than the.Mars hand, the..

‘Barth will have'rotated more than a comf_&lete revolution and be at - By r,'
' Although Mars is again in 1ts initial position relative to the ’ﬁ:Lxed ’
stars as viewed from the Sun (i.e., collinear with S ), 1t 1s in a differ-
;ent position relative to. the fixed stars as viewed from the Earth

Tnitially Mars is collinear with Earth and S TM -later, vith Earth and

1 ’

o !
. 82 ¥ ﬂ Yet %espite Mars at M P_P.M g-againgt the framework of -the

th at E
s;[nce the Mars year is TM’ we know inferential’l t.hat it is
—_—

e
(S U

-~_ﬁ'. »in the bsa.me position: : . v S AR

. ‘5*"5\'M
v

~ We may infer much more. TE being known, the angular velocity of
our celestial hour hand is known, sp that the angle tumed in time TM
ca.n be computed we can determine ZE]_SE And taking the radius of
the’ Earth's orbit as known, the length of base ElE _&nd base: angle_s of
isosceles triangle E:LSE2 ‘are determinate. . '-.u .

What else do’'we need to compute SM? What are the easiest things -

: ~to measure accurately? Yes,* angles. ‘Now consider Fig. 25.

et

:.‘-_{..'. .‘ | .'.':-'..’ . L. 4 é




e ). Lo

byl

F,isure. -

The position of the Earth relative to Sunt end fixed sts-.rs‘hed."been given
careful study from Babylonian times, ‘Tycho Brahé had made most exact
'observations. This data enabled Kepler to determine the fixed star Sl '_ S .
collinear or most nearly collinear with Sun and Earth when, for exa.mple s

. the Earth was at E - We, have already remarked ths,t although the-Sun

is not visible to- the terrestial astronomer at Ej_ when observing Sl

“ 1t 1s nonetheless "observe.ble inferentially". Thus Kepler was able to

_ .measure ASlEj_M (where S,E, produced passes thro s) when the

- Earth wes at. B and likewise ASQEQM (where SpEp produced passes

w .
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I
through §) when, -later, the Earth was at Ey. :

(Do not confuse the fixed star S, of Fig. 25 with 8t of Fig. 21+
the latter is collinear with El and S, the former collinear with El
and. M. Nor is 82 to be identified with S ).

What use can be made of this additional da.ta? LEEE]_M is the supple-

: ment of the-sum of the known angles, LSE E AS E M, and therefore

_ angles and a side (E ) are known, 50 that by using sine rule EM

determinate. AE]_E M is similarly determinate. Thus in AElE M two

: . 2
is computed. But; ZSE2E and. AE]_E M are both known, 80’ that in

ne e

' ASE M we know" the .angle SEM as well as the sides containing it k\ -

by using cosine rule, SM is- computed.

f(emember thdt Kepler's working hypothesis includes ‘the supposition '
that Magrs repeats its orbit w1th regularity' : no matter what Jitg” orbital
position at a specified time, it will again be in that position after an
interval TM -So the above method is applicable to computation of the -
lehgth of the Mars hand of our. celestial clock in-any position. In this o
way TM was_ inst_rumental,to Kepler s determination of Ma.rs' orbit around
the Sun. . ' .

Having computed many radius- vectors of Ma.rs' orbit, Kepler with
eriergy to equal his enthusiasm set about fitting theory to fact. His )
inheritance of Tycho Brahe's observatlons gave him data .with an accuracy _
unknown to the.Greeks --and consequently made h1s task all the more diffi-
cult. Finally, at his fourteenth. attempt the theoretical orbit conse- ]

. quent upon his hypothetical epicycles closely approximated to. the factual

.orbit: there vas a d1screpancgr of merely eight minutes of arc, ‘an’ accuracy A

u.nknown to the Greeks. But, closeness of fit which “would Have been more

- than good enough to sat1sfy the Greeks was re,jected out of hand by

Kepler. And with it.he re,jected the notion of cycle and epicyele, bag'

. and baggage. He was sick with the wearisome ‘repugnance of ep1cqu.e piled

- upon epicycle, the dogma of perfect motion had become a celestial night-
mare. ~His final ‘hypothesis was. that '‘Mars moved in an ellipse with the ’

. Sun at one focus° it worked. '~

This, in rough outline, is how Kepler discovered the first mathemat-"'
ical law .of astronomy;‘ Unfettered from the dogma “that the planets move
-in perfect’ %igures, i.e., circles, it was an easy step to re,ject also the

fiction that they move with uniform velocity. The hands. of our celestial

_ clock rotate with variable s.peed. . Tycho Brahe's observations afforded

,ample evidence. Indeed, it was known 'lﬁ\the Greeks that the nearer the
Earth is to the Sun the faster it moves; yet it took the insight of genius

-
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_to.discover the law. See Fig. 26. o Y

. R

' Figure 26

.

A

, ‘Kepler found likewise that the farther Mars from the Sun, the slower
it moved; the nearer, the faster. Eventus.lly he discovered the law vwhich
fits the facts. Mars moves in its orbit so that the radius vector SM
.sWeeps out equal areas in equal times. . S | |

By analogy Kepler extended his two laws for Mercupy to the other -

E ‘planets. The ‘available data fitted. -

Many years later he discovered a. third law. We recall that the

‘planets in the order of their distances from ‘the. Sun are Mercury (nearest) 5
'Venus, Earth, Mars, Jupiter; and Satim (most distant). ‘Also, it is &

fact that the farther a planet from the Sun, the longer it ta.kes to com-:
plete its orbit. Kepler first supposed that T, the planet's year, is’

proportional to R, its meen radius about the Sun. He quickly found that '
- T increases faster than direct proportion, to double R ‘more than

doubles- - T. The law is hidden;’ eventus.lly/Keplervfound it: The BQquare
of T is proportional to the cube of R. X N ' ' .

: Kepler's published work is a hodge-podge of astronomy, astrology,
geometry, theology,. and a miscellany -of oddments: he sat astride the’
watershed. Yet it is intensely interesting, for unlike Galileo and. Newton
he did not try to. cover his traces., His con,jectures, failures, successes,
errors, insights, ‘fallacies, obsessions, are all revealed with disarming
franlmess.. No other man of genius has been so open about his wild goose
chases. But Xepler's work is so full‘f competing idesas that it remained
for Newton to separate the wheat from the chaff, to discern the :meortance

of what Kepler did not ,hims_elf f‘ully appreciate =~ ‘his three laws., :

45
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) " ._'_lg. . 3 . , n ‘-1..
iy 1.2.9 Newton's Problem of -a Cometts Path -

36 Lo . . ’
'172.8 A Word to the Teacher - 5
What is the primary importance of Kbpler s work for the high school, )
mathematics student? First that there are applications of trigonometry N

. on the grand scale. Trigonometry, as we have seen, made computation of
Mars' radius vector pOSsible. What could even a Kbpler have done- without
mathematics? ‘ . .

_Second, we see the role of what is usually ill~described as "trial '
and error", better put as successive approximation. Kbpler, we. recall

" starting from the working hypothesis of uniform gircular motion, deter-
mined the‘Mars year TM only to conclude finally that. MarS' motion is

neither circular nor unifonn, but elliptic and non-uniform. )
' Doesn't this appear. paradoxical? The initial hypothesis that

and Mars have uniform circular motion is- erroneous, yet a’ good ap

tion to the truth, Note that the calculation of the synod is not inval-
idated by the orbits of Earth and Mars being non-circular:‘ the coincidence
. of aur celestial clock's-hands is indepcndent of variations in their lenigth
~ and dependent only on the uniformity of their rates of rotation. Also,
as.luck. would have ' it, var1atlon in the Earth hand's angular velocity is
" less than that of the Mars hand, so that a good approximation to the -
Earth's orbit suffices to show that a similar assumption for Marst orbit
is unacceptable. " More accurate- observation d? the Earth's orbit. leads to

more accurate detennination of Mars?, N

o
§

g conclude this seci:ion ’with :1 pro'blem ' Calculus is not necessary,
but will need yourftrigonometry. Newtdn,‘in addition to his monumen-
.tai'Prinoipia took'the trouble tor write a book'on what we now .call high

A;school algebra. And: what'is the main'point of Newton 8 algebra text? The

same as Descartes'° to solve word problems--thereby demanding, among other
things the full comprehension necessary to translation of problems from
prose into mathematics Newton s problem in good old-fashioned .English
is:l "To determine the position of a comet's course, that moves uniformly

S dn™ a right line from three observations Fig 27 illustrates the prbblem.

’
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: onometric function of 8 -- the nicest is the cota_ngent.*

/{[‘o Fixed- 'S_ta.r'

Figure 27

Newton knew perfectly well ‘that a comet does not move uniformly and doys‘
not move in a straight line. What is the path of- a\gomet? Yes, ‘an
ellipse. But, don't you see‘, a straight line is a first. approximation?
Here is the first step in a- sequence of successive approximations. What

is observable? 0 stands for Observer. O observes “the comet at A,

at B, a.nd C and notes in each position the star with which it coincides B

or most nearly coincides. ' The ang]l.es subtended at 0 by these fixed stars

are measured i.e., ® and o' are known. Also O observes when the comet

is'at A, at ‘B, andat C, so that the times t end t' for the comet

to pass from A to B .and A to C are ‘known., In sh'ort, given w, w!,
t, t', and that the come"t’s motion is uniform, we are required to find.
the direction of ARC. This is most conveniently determined by finding .
B . We conclude with one hint to find B we must first find a trig-

) *See Mathematical Discovegx, Polya, Vol l, D.. 5k, problem 2.63.

47
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© Section~3. ‘Sucdessive Approximation

We'bégin by repeating a point:. it is important. "Kepler started

from. the assumption that Earth and Mars move with precisely uniform

ircular motion dround the Sun as center,.to finally arrive,at the conclu~-
sion that Mars moves neither in a circle nor uniformly; nor is the Sun ‘the
center of its orbit._ Tb the uninitiated his argument like. the orbit of
Mars itself, appears to be circular., But scientists habitually argue this
way. «from a working hypothesis given by proposition p Ve are led to the
conclusion. 'no; not p". This procedure is often described as the method

. of false position. From a "false" (inaccurate) start we' proceed to a
-~ "true" (accurate) finish: beginning with what is only approximately

correct we reach by’ successive diminution of error, if not a dead accyrate

- result a much closer approximation.

3 ‘,f_y

.:-pages. Doing this we turn up, say,

. The method is well illustrated by- the way we look up a word- -say,-
CONFIANCE,}in a Frerich dictionary. We open the dictionary at where we eB--
timate the word to be., If the page ddes not contain words beginning with

- C “then we have made & poor estimate ve have judged falsely the ~position -

_of the word; we have made a false start. But~a poor estimate can be a
step in arriving at a better one; a false position can lead to a truer.
%Neft estimate turned out ‘to be & page

(more accurate) one, ‘Suppose our

.of words beginning with B, we est_l te that we must turn on five or six—

Wbrds beginning with’ CA. We have " -
arrived at an improved position, But we want C- to. be followed by - O,_ .
not by "A; we have found the word dorrect to the first but not the
second, letter, If odr next estimate ‘gives us CO ... we have found

-the word,correct-te at least two letters-~ if incorrect.and faced with.
CL we turn forward; if faced with CZ we tum back. Well, you know how’

. to use a dictionary efficiently'--but did you appreciate that in 80 using .'.

:i method and see the idea in action. L

. old.

1

decimals? ‘ : ,3”
/

. Full eppreciation of a mathematical meth .,,J
V
talking about it, only by intelligently using it.

1: 3 1 “First Application S
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. A loaf costs half a dollar.

" neglect it, and our

2

. ‘
t -

what is the price of a loaf? Can you do it ‘in your head? Try. -Let x
cents be. the price of a loaf, then ' '

..' i ‘x_25+__ . ¥

80 that '

instryctive. wayof doing it. -
To prevent ourselves sinking too: deeply into the particularity of the

_ There is for our purposes a much m

problem, we generalize by taking a cents instead of 25 cents. This is
an enormous advance which enables us-to deal en bloc with a whole - family

éf problems our problemr, its brothers, 3 sisters 3 cousins and aunts.' General-
ized the problem is: find ‘x, given.that '

R B x_a+-§‘.‘- 1y —

. Obv'iously ) the solution]" : x.= 2a;. yet-a person with the outlook of a

practical engineer might be enticed to tackle our problem in the follow-
ing complic'ated, but

*

pst ingenious, way: g is less than .x,_ so let us

itial approximation X, is e S d
{ N . o . . . A

o ) ) _ o )
v i xo =a. . . (2)

' Obviously this approximation is too small, but it is only & first trial.

Surely we can do better than this? What happens when ve substitute (2)
“in the Tight-hand side of (1)? Iet's find out.

g $ 2

Our new.-approximation :

’él (conveniently called “the first") is g‘; g
R R ‘ . x X . *‘ 7
x1=a+—ég—a+%. . .
This is better, so .let's repeat the procedure,.i.e., consider a seco’nd
g approximation X, such that.
X, =a+ l'(the preceding appro_ximation)i
2 2, o T .
i.e., " R ' : ' )
' X 1 a  a
. : xe.; +-—2—,-_a+ (a+ ) .+§+.E"
Better st"ill:i ’Nothing succeeds like success.; What is 3
SR x o .
- - sa a. a
S e g oe—m = = = = + e
e % e %a +3 ( a+2 5 + E)‘ + I *E8
Satisfy yourself that. Co ‘ '
. x) = a*‘*n 8 ‘15 - ‘

. Ve can repeat this pmcedure again and again. 'Although we will never

' reach the true value, we can come closer and closer to it & This is

- readily seen in the following way. Take a number line’ in 3hich numbers




“9 X ) - ~

appear as distances , 8O that a 1is represented by an abscissa. ~ See

Fig.‘. 28- Y
B (
L &’ ,
1 ' : : o
. X i & X X L
el ° P > 1]
el e ] -
‘ a+fe2.8

]

Figtire 2B

Observe that 3: (i.e., a) is. halfway between O and 2a, o x l (i e. ,'
a + -) is halfway between x, and 2a. X, (i.e., a+ - + -E) is ha.lfway
between 'x, and 2a, and x3 (i.e., = + —- + E -8) is half‘way between
L%y and 2as In other word,s » X is obtained by adding half the dif-
5 'ference between X and 2a, . X5 As obtained by addigg haif the difference
. between X and 2a, and 80 on. In making the n’ approxima.tion
xn we take ‘half the preceding difference (i €., between xn-l and 2a)
~ Since we take half we leave hal.ﬁ, since we leave ‘half th‘ere is always half
left.. Thus. no matter how many successive steps we take- we ‘will never
get the exact solution to (1), 5 yet every step must give a better approxi-

.mation than its predecessor. Observe that xl is 2 short of _2a, X

2 : 2
J . ..a' K y
. . is E short. of  2a, ,x3v is 8 short, !-I» _is 36 short. But these
‘ denominators, 2, 4, 8, 16, ‘are powers of 2. Putting this explicitly,
: % S . -
-we have . . . ‘ : : o
T a T a i ’
s y=etz=2-3 .
. a . a ©a
’ N Xy=8+5 +—0 =28 - —
. e 2 "2 2
- " L a .  a ,8a. o .a
L X, e to+ 2+ B _pg B
372 2 3 23
: a,a ' a a a
X, =8+ e b = g g
b TET 2 T3 o o
a a a . a a ‘ .
X =atst—s b=+, 4By B (3)
n. 2 22 23 2n B ‘211' ) i

i Our alge’bra‘ 'onfirms our geometry.
‘ This /;‘esult invites generalization.’ What is the pattem exhibited
by the sequence of terms of xn7 Each term (except of ‘course the first)

- -
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with the (n + 1), Ve have -

" we have’

R

: is % of tne one before it But ourfsequence would still'exemplify this

pattern if instead of the ratio of a ;erm to its predecessor being: 2,
it were %, or ;, or %%,. Generalizing, let” the ratio of any term

to its predeceséor'be r. . The first term is' &; what 1s the second? ..
'YeB; ar’, anﬁ‘“the third term is ar2. What 1s the nt-.h i
n-l terms after the. first: and with each another facto

"0 that the 1" term is er’ . I.et 'S, be the Bimiet . 1

D L Sﬁ'e a +ar + ar2|+ ars + ey + arn-g ra®t, (h) -

! »Any sequence of this pattern-- in which each term is.in the same ratio to

its predecessor-- is said to be a ‘geometrical’ progression. o 1
' Since anv—te;;:is obtainable by multiplying its predecessor by ‘T,

it Tbllows that to. multiply each of the first n terms by v 1is to-

obtain the sequence of n terms which begins with the 2 and ends

.,-.‘

Sh.:.a + (ar + ar? +.ar3 +..;. + arnf21+ arn-l) -
‘r .8 = (arl+ ar2 + a'r3 ok ar® 2 + arn'l) +ar” .
Subtracting,

(1-1)..8 =8 +(0+0+0+...+0+0)- ar’

so that = .
l R el . ' N »

=g . . o 2

CSpmecTT o (5)

. Does (5) check. against (3)? If in (h) we put T = %

. R
a : . ..
B . S ,
22 ; '2n—I A e R o .
Comparing this with (3) we note that x; "has an extra term, f.e., (n+1)
terms: to make (k) and (5) applicable ve ‘must write n-+ 1 for RE

Doing this in.(h) and (5),-(with" r ='§ of course) and equating them,
we have . s . K . . .:~ ] - ( )n+l . -
+l=a+ﬁ+f_a;-+...+ al-Fa=a-. - - .
n+l - 2 ..22 on- 2 , 1 -;%' R 4 -
SN { — 1. ‘ '
=TIV e n+l' ,
= ‘2 | ‘o.
=.2a - j%. ‘ .
S 2 E *

It checks. 'Solution of our, little problem about the -cost: of a. loaf, by
the engineer's ‘method of successive approximation, has led to discovery ;’
of -the formula for the sum of a geometric progression. . Oh yes, doubt~ '
lessly it has been discovered thousands of’ times, but this makes the -
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resuli', no 1ess a ne.tural ow:omé of our deliberations. Vi

1.3.2 Extrs.ction of Sg&re-Roots e . ~' . ~.~.~
© 7 let us consider a.nother exs.mple of successive s.pproxim.s.tion _.f- Perhs.ps
_ you cen quote it from memory correct to & few decims',;l. places and probsbly' you '
te.p.ch the "sta.nda.rd textbook method" .of squa.re root ex;:rs.ction to your cls.sses. '
“You ¥now . the method I mean: start e.t the decimal point e.nd palr off the digits :

, before and after it then from ‘the left-most number, i e., the number denoted by ‘
the digit or pair of digits of the first "pair", subtrs.ct the gres.test perfect
squa.re not exceedi:dg .it and ... . Well‘1 YC)U know how it goes. Of course you -,
. can tee.ch‘this method if you insist .- I' had it inflicted on me s.lmost seventy o

yes.rs ago. T didnt't understa.nd the res.son for it, s0..I hated i‘b. I still
But you can teach a different method; more interestin”g, becs.use it is

immedis.tely intelligible H more useful, because it has an inrporta.nt genera.lizs.- L
-" tibn. By hand it is a.little slower to use tha.n"lrh&."sts.ndard textbook method" .
with e. desk calcu.lator, quicker. You hs.ve to mske up your mind whether you wy

S

,' . wish to: teach rap!.d’ compute.tion or a methqsl which 1ee.ds somewhere. cT e
AR  To. e.voi& d&p&ication of material, the" reader is referred to the’ "divide

' s.nd s.vers.ge method of finding square roots.\ See P for exa.mple, _High School
Ms.thematics,‘Uhit 3; PP 121-130, University of Illinois Press, Urbe.ns., 1960
First Course in Qgebra, pp 301+ 307, Ye.le University Press, New Haven, 1960

ﬁ. R Or i ,..»_k.,

' Section L. Newton's Method o'f Successive Apg oximation B

Successive s.pproxi.mation is an i_mporta.nt mathematical method it is the
very essence of sclence. Although s.lmost invs.ris.bly in science we must begin -
with what is only an approximation-to the truth we »need not rest content with

o it. A crude s.pproximation ca.n be made to les.d to 'a less crude s.pproxim.s.tion,
a good s.pproximation to a better one. Ths.t the notion of xs‘uccessive s.pproxi—
mation is a key to mpre exs.ct knowledge ’ makes it a worthwhile study.

-

l b1 The General Method of Newton . . .
.' Newton devised a general method to find ‘thé roots of an. equation, ths.t is, .
- to, £ind- the values of x such that f(x) 0. First of e.ll, to get some idee. )
where .the roots lie, ve sketch the functiona.l rele.tion ¥y o= :E(x*)x Suppose

ths.t part of our curve is as illustrs.ted > Fig. 29.

u
"




Note_tl‘{at at P _
o ordinate 1is zexo,’ so tHat f(x) :
. or abscissa of P is a. réot oftt (

generally we cannot expect to be so lucky. :
' ve find f(x ) 74 O Thus it turne out 'that xo i_s_.merely’
an 'afpproximation to the root. What to do nexb? o S

" Newton tells us to do something both simple and effective.» At Po, IR
where c@-ordina.tes are X 0’ f(x ) 'y ~dre.w the tangent to- the curve. SuPPOse
this tangent to meet the - x-axis at 2 point, Al with abscissa xl, then .
xl "is seen to be’ a‘\better ‘approx1mation. See Fig. 30.

. T oo
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he curve with ,the abscissa i = ;

. ange 'cut the x-axis In & ;;c'aint A2 :‘with abscissa
e X5e '».-Bepeat the p'rocedure-.~ At P the poin,t on the curve with «Fhe ab-, ,
R -scisBa x2 of A2 y. draw a tangent to the curve ‘to cut the x-axi

" point | A*3~ th abscissa. x3

':'equence of points Ao, A.l A2, 4\
hat %, xl,

Xpr X3
quired root. See P.Lg. 31..
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[ 28
-
[ O
2
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et 7
R
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) ' Btgt ‘t;hough it is evident that in prlnciple the procedure may be repeated
0 unt;.l a.ny reqluired degree of accuracy is obtained, in pra.ctice there is

Figure 31

> a. limit to the number of repetitions possible with pencil and graph:

'_'paper. In our diagram ‘the thickness of our. pencil line for the tangent
The role of geometry is to illustrate .

. at P3 defeats f‘urther agcuraey.

b', ., the method; for its unlimfted b.pplicatlon we need a formula.

. 1. h 2} Newton's Formula

B See Fi{SE
o Coam

5,"7 ki
T
*
P
. s
» o
R | :
. . R -
: R | @ : M
AT o
Y .
3 5
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b . . i - .‘
. ) . :-Flgure;Be w. v )
? - . o . . o ‘ . . . . | e . ,
. ‘Tn N\)Al _ ey 4 . :v .
.' ’t‘. r = . VE_IZBE.cal rise . o, o ‘x s ; (1) )
. &ﬂ‘ = horizontal a.dVance = AlA % _. '

A.nd hara bhe differential calculus comes in usef‘ul for- tan 7. '1s also

thg slbpe at P of' the tangent to the curve y =f(x). We recall that
“the sloge of . this curve at the point (xo, £(x )) -4s ‘the yalue of its ® ,
dif}‘el‘eﬂti&], coefficient _d_y_. when. X =, “%gr ‘Or to use a.n alternative - '

notﬁtioﬂ, “the va.lue of f'(x) when ;c :Xge'« The la.tter is expressed with

cm;‘\efli@nb notationa.l comﬁactness by, f'(xo) So, in short, -. :
T ey, L@
P . FroR (1) sna .'(2) N D
-’ \‘ ry v ’ ~. .. L
. . :‘ "~
givhaR .
v W’
b ’ ., f(x ) s
R —m % - % -
R N .
so Anfy ’ f‘zx ) 2
[N y Py xl = XO - 1 X * ‘
! » 0] - ' ot
v ¢ ,"A . “




. E Given xo this formula enables us to compute xl.
- of Newton's method is its: generality, xé'
o ox Xy from x2 in exactly the same way as 'x,  from " X..

o 0.

Q similarly, .

ve
]

¢ and Newton's famous fopmula, in its full generality, is

f(x )

il T *n T T(x )

formula to work for supposing that successive approximations are better

approximations, it is nevertheless prudent to test it. To " be chary of

Yet the efficacy
will be computed from X and
That is,.we have

N7

'Although there are excellent intuitive grounds for supposing Newton's

¢ “the untried, hesitent to accept the unproved, is the very first require-

ment of a scientific ettitude. So, let ms try it out.

143 Ja . L

e * “y

. Supposeéthat we wish to find. /— the positive root of -
- } 3 . o . f(x) = x2 -a=0,
" Here, . '

.t o Ve - f1(x) = 2x :

so_that_applying'Newton's’formulae, the right-hand side of our required

- ‘equation is : : R : 3

L - T . X e
e - : 2X

1"15' . ‘ - RN~
: ’ : . JX - a
. atn T
nel T xn S 2%
L 3 , .
- Hence, . ,
N . . ¢ ! X_.
. ’ X = X LI
- ndl T n .2 X
Nt n
! ’-e‘ ‘X +'i
X, noox,
R .
= — -+ = — .
2 2

O
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. But)
T -' . B . -E- =8 ’ o
, T % T o o L
L n N
\ . . T - a : g » s 8 Lo . -
'-BQ that if X, is an overestimate for a then P is.an underestimate, -
: . = ' ' . : n
‘‘and conversely. These considerat*bns-are consistent with xn+l’ i.e.,
. " the mean of 'xn and iL being a better approximation to a. than X N
el ’ n .

’~»;;q2but do not prove ‘1t. . So let‘s get down to brassvtacks . Suppgse'we wish

to find /3, and that our crude initial approximation (x _where n =0)

el 8o 8 _2_ 5
s Xy 7.2.. Then > % ° zhf‘l,
. om0 ‘ -
so that .- o .
. T -~ 2+1_3
I B -
Thus,
& _ 2 k.
x, 3 3
1,35
. 2
and 3,5k
-, g‘ _2 3 _17 . - .
et 2 T 12t .
H - .
erce "
. & __2 _3 S '
{ X, 17 - 17
v 12. I
and - L l'_-(__‘_,& A
. 1 17 %11_
3 2 408 ¢ .
- Our successive approximations Xgr Xys Xos x3 are ,
B s 3 A % “ . -
& 2J. 12? - ’ v ; . .
L whose squares are o o , _
'2 T127 h08
. .Letting the facts speak for themselves is a strong argument. ’
58 ]
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To further. test Newton s formula, suppose that we wish to find the cube

‘Toot of a, - the (real) root of

f(x) ='x3 - a.
‘Here j
B £'(x) = 3x
8o, that , N .
- . & = x .8 : N '
n+l . n. 3x |
Hence, N .
X =B, 8 .
ntl . “n 3 2
ST 3x
. “n j
%, A
L3 2 '
. 3x,
. ‘a
. 2xn+'—2' '
. X :
Y n .
. 3 _

At this stage it is illuminative to take a numerical example.
we wish to compute /-3 i e., to find the root of

__— : £(x) =

Suppose'tﬁat

26,

Evidently 3 is a.better approximation than 1, 2, b, or 5, 'so let us start with

X, = 3. Consequently 3% = %?;'
TR x : -
Since
s 3 . 3 . 3

33 is greater than /_3 yet note that
' 26
9

: ¢ (3- 3) =

v

% ig "less than 3/2_6. But-

pinohed netween 2

Consequently
. L4 Y
5.end 3.

9- :
Alternativelyj‘if we take x

5

between lj;

25

convenlence of a close in1t1al épproximatlon

Returning to our computatlon with Xq

‘%

.. .,*

-

O
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{say), then

-and 5,nﬁitp‘plenty of elbow -room, so-to speak.

27 > 26.

(¥ - V).

, eo that 3/56 is already

8"
...2—9-

2

—_—

= which ieaves Y8 -

—

. B v

S
. We appreciate the
i _—

)
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o and to’ calculate it from thelr numerical values to as many significant figu.res

50 . .

so.thet = - T

converseiy.' ‘But, . . S _ c0_

. 272
80 _ |
x =% 2962...'.'
‘a 2 g
_4—2=—12—_2961...
& 8
2
. 27

=) that 328 1s already pinched between 2,962 and 2. 961, and 1s therefore 2 96

"correct to two places of decimals.

Continuing the’ computation s we have

8 . 26
a D o = 4
LY 2T . gof -
%, = . FE
2 3 =" 3

. . Lo . R
It 1s left to the reader to show that 328 11es between | X, mnd
N 3 s ) 'v . . . :u“ . . 9 h x2 ) ! ,

as 1s pemissible . . L

: ) o t _
1.4.5 5JE : : o -
’ Although there is an algebraic formula for the solution of the general

) quadratic,' and v'ery complicated formulae for the cubilc biquadratic equations, :

- it 1is ‘impossible to obtain such & formula for the general equation of degree
5 or higher. In real life, to; gbve actual problems, we are obliged to proceed

at
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by' approximations 1 'by arithmetic procedures that give successively better

approximations. . .0 ST o
o ~To conclude our testing of Newton's formula let us find 5-fa, 1.e., solve -
£(x) = :? - a. o
P A -\
- Here, . :
R £1(x) = 5x :
80 that ‘ ' o) E
| ‘ x =x - DLy --R
n+l n f'Z'x'ni " n st * :
~ Hence, - o n
n ., _a_.
xn+l xn 5 + 5—}?:
n .
Lx
n, 6 .a
, e = —5— + —-E .
5x. ‘ .
n
) bx + _aE
. X - 'Y
' K ’ = ._£ - -
. L . . 5

Everybody ms.kes mistakes, nobody is infallible., Whereas we cannot avoid
_  meking mistakes, we can ms.ke checks to avoid leaving them undetected s.nd there-‘ '
a", fore uncorrected. Do qur formulae for x .4 for 2/— 3/_ 51/71 exhibit some
¢ t‘em? Yes, the pattern that for U

Proceeding as on previous occasions, we have s ~'; AR e N

'.—h- (x-xn-x-x)—a—swf— (51/— 1/— 51/—)

Ve _xn _ . i _' _

. - . N
From consideration of this it.is evident that if xn is greater than .5{3 e e

“then ,_ah_ is less. than 5fé, and conversely Consequently 5/— must lie Sk ':
. . N EI |
between x and ‘—E And similarly if x a1 ;4 51/71 then the root must also e

lie between ‘xn+l .and T— : Now suppose. that - x, > _E’ then - VY ‘

el v T , Lo

: - a : v .
» hfxn x >_l+xn_+_.—1: o L
Lo o B C
- so that -~ - C R . - o
. . o ,hxn+—1: R ) . S I.
. . - 5% X _ o .
A . ) n> A n » } ‘.". o

O
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) " e/ ’ -
*n >xn-l-‘lf (2) .
T<x
x - .0
n ] . - . A
a . &a - a
I#-E +—E<,+xn +_E . .
X X . X f
n n o .

Y ' o .
< Xpge oo . (2)

. n _ 0 S

From (1.), (2) 1t oij:o'y_zs' that .xn+1 lies between X, a.nd —a,; . ‘Also by (1)

X . 4
n . .

-

:}:én+1 1s necessarily a closer ﬁp-
33. closer lower approximation than _’I

‘.'_..? "
! wd ‘n

We. thus! g



R e - v
Chapter 2. . From the History of Mechanics T ‘

Mechanics is the study of the- action of forces ‘on bodies. “That part _ )
in which the bodies are at rest and, consequently, the forces are in equilib- o

‘ rium, is called statics in con‘trast to the other pars, gmamics in which

the forces are not in equilibrium and; consequently, the BYodies not at rest.
‘Here we sha.ll be concemed with the simpler and first-develop)ad branch, _' o
statics, which is conveniently introduced by consideration of the contribu-
tions of Stevinus ant Archimedes..- Alth)ough the first real- achievements afe. .a

cuss the latter first. - _l:'

' .2 . -. ° -‘“‘,? - . . . 1_,‘;-
S Section 1. é&:EVihu‘s and Areh’imedes

due to Archimedes and. preceded -Stevinus? by many centuries, I prefer to dis- a A

' Stevinus , 8 Dutchman, lived iri“t'he l6th Century 'y contemporary with'
Descartes, a century or so before Newton, Leibnitz, and the invention of the , »
' differentia.l cachLlus. - He was a brilliant applied mathematician‘who was fas-
cinated by the usefulne‘ss of mathemat;_l,cs' for Stev:.nus, mathematics to be _
.good had to be gon for something, He was one of the first to use decimal
fractions and showed their _useﬁllness for everyday affairs, he’ invented
' the first ’horseless carriage., and he constructed dykes, whiéh ‘atill serve

T

I T
R -

" Holland- to this day. His achievements are commemorated. by his statue in his
-native city ) 'Br’u’gge. Iif you ever go there, look him up. Meanwhile we. shall
consider his derivatidn of the Law of the Inclined Plé.he. '

2ll Tnclined Plane, L ( T -

“ Even crude, casual, unavo:.dable everyday experience presents the curious .

. "with questions. Indéed, the simpler the experience the: rore aifricult tq
' avoid meeting pertinent questions head~0n. _ No matter whether or nhot it in«- '
'terests us, we all know: that it is harder to puSh an object up a steep in-

cline than up a less steep the steeper the mcline the harder we neefd push. -
‘ An incline formed by a pair of planks ehables. s to slide into our station - .
vwagon a’ trunk too heavy to lift,, and for the same good reason the brever N _.."
' loads 'his ‘dray by rolling the’ cas‘ks of beer up. & ramp Brains decrease the - " .o
' 'need for brawn: th‘is -simple- machine has the merit that the ‘incline takes SR .
! ,part of the weight 'I'h,e curious naturally raise: the question. Since pushing .

‘up is less strenuous than lifting, what pre.cisely is the saving in effort?

It all depends. - Yes, but on what? Stevinus was curioyys j

After pondering these matters, Stevinus conceived%}g-le question in a
new context. hs "How does the pull {or push) to move a heavy body up an in- .

"cline compare with the force necessary to 1ift it directly?” was ‘asked in’
. i
,w

",‘I" . 83 ‘ . ) _. '

v

O
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Iigure 1 .
T Since the tension w in the string counterbalances the force. acting down
the inclined plane, ths ratio pull to. direct lift is, wi:W. ‘But a ‘vertical

{plane ig a- special case of an inclined plane, so that the underlying general.

)

PR R X . o

Figure,E.Fn
-
"',vAnd the pertinent question, giuen equilibrium -What is the ratio of W to
ifw?'
o Our crude, uncritical, everyday experience suffices to begin an answer.’
We know that ‘the steeper the slope the greater the pull. When the angle of

=inclination i

zero, no horizontal force is needed to’ maintain W' in equi-
' librium, when he angle of inclination is 90 y 8 vertical force W is

necessary. Con ider, C “

O
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'dient of puzzling something out.. - By this method we
attention on the fact that the force to maintain a bo ;in'equilibriumuonfan. o
‘inclined plane is dependent upen the steepness of the '

consequently slide
but how much’ less?

Yes,

', que tion to consider several.matters of importance

raised by the foregoingb Eﬂrst that’ varying the data is " an impOrtant ingre-

by »__l
ave come “to focus_ppr

RENE

»clhm.
‘Second, in retroSpect many tac1t assumptions come to light We all

Ifknow that when using & ramp to load a- statlon wagon With,a heavy trunk if

We stop to get our breath ‘the trunk does not, necessarily slide back down f
the ramp. Frlction can be sufficient to preyent its sliding down when we ]

under the Weight W vas neglected. That friction at the axle of. the pulley
‘wheel would resist turning and consequently movement of the string, that the

;string has weight: and therefore the . length of it each sidé of the pulley
'fwheel is relevant that the string may not ‘be completely homogeneous, but

vary in density; that 1t is not completely erxible, but offers resistance

.:cehse pushing it up. We said nothing about friction. Next \consider the' .
.Zsituation illustrated.in Fig. That the incline might sag ever so slightly

to bending at the’ pulley wheel.:that the portion between W and £he’ pulley L

’ will not be abSOlutely parallel to the incline, but dependent on its density
.and flexibility, will sag ‘a 1little; have been neglected.

. Nature is infinitely complex; to render an 1nvestigation'possibleylits“

: complexity must ‘be reduced'to manageable proportions. ‘The friction of our

.o,.._ ) . ) L 60 t 5" . L. ' L N

]

-station wagon - loading ramp can be diminished by making its . surface smoother §



. e T C e
. N R ' ,
.;and smoother and Ey using better and stil’l bet'f:er qua“llty 5‘__

.....

‘_;,.approxima.tes the, ideal frictionless state. . Similarly, by us#g %hinner, morg
: flexible, more uniform string, ‘more rigid and smoother planes, &nd better "',.':-.f
quality pulleys s we mihimize *Ehe.: inYlue‘nces oF: minor c:[rcumstagl.ces‘#of Figi l

.solv1ng his probﬁmfkk%recise measurement and critical observat On.‘ No.- )
. Before he .could intelligently make use of measurements he ha.d 6 decide what

‘3
RN ~measurements could intelligently be made use of‘ :-To the contrary he solved

P " his problem by precise thinking about crude fact - His real problem was con-_t

r : -ceptual he: had to decide what %rcumstances vere relevant, what irrelevant
~and of the relevant what was ‘df ma jor importance and- what couJ.d reasonably '
.'.jibe neglected. It is precisely this controlled use of "the imagination, ‘this -

. _'conceiv‘:‘.ng of an idealized situation by abstraction from experience, that is

:"'the ke)( to discovery. Unti_'l. Stevinus had a theory he’ had no theory to test;

» his need for precise measurement was subsequent “to this theorizing. :

' _ We return to the problem of the inelined. plane itself. . Wna.t, with the .
;idealized cirooamstances of Fig, 2, is the ratio of W . to W for equilib-
'rium'l Deeply pondering this problem, Stev1nus appreclated th&t with no
friction equi_librium is 1ndependent of the shape of the bodies W, W Whether
these be box-shaped or barrel- shaped is beside the point EVen g0, it takes

" more than an ordinary exercise of the imagination to suppose bOXeB or, bar-

" rels to be replaced by’ rope or chain, Consider JFig. 1#.' ‘

(L

N
3
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closely interlocking links that adorned g, 'dfather's uatch and waistcoat.,
‘This, idealized is é perfectly flexib1° metal rope of uniform density.
ffhus the weights W, w of AB BC are considered proportional to their .
lengths, 80 that the .ratio ‘of W to w.dis ‘that’ of"_ AB:- to Bc SO our prob-v- b
lemgﬂnow, is to find the latter ratio. ‘Is there any .

fal prospect of doing

.

807 We seem to have taken 8 step in the wrong directiohq . T
. The measure of & giant is his stride! Stevinus wore seven league boots. s
}ki imagined what-very few of us would imagine,‘a elosed chain. Consider

Fig. 5.~ . : o e UL T e
N a Ty - 0 ' B vi;;,: A

o

inther the flexible homogeneous closed chain hung over the triangular prism

1§ in motion or it is not, Suppose that it is in motion in, say,‘the direc-bri; B
tion ABC., Consider a particle of chain, say that at “C. Since it is moving *

downwards there must ‘be a downward force acting on it." When it has moved, . ;;::
its place at C will be taken by an 1dent1cal particle. What now? The’ )
whole chain st111 occupies the position it had previously, although each . o - S
particle has moved 8 little, each has been replaced by an identical particle: S

S . . ,
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the overa.ll situa.tion rema‘lns uncha.nged. We are forced tq, concede that if : o
originally there ‘had been ar downward force acting on the chain at C then‘
there still is, Consequently,u if the cha.m is in motion origg,nally, then

:Lt is in’ motion foreVer But surely perpetual motion, a. free 1nexhaust‘ible
supply of energy,ais ‘a philosopher g pipe dream. The Dutch k.now that from .

nothing comes nothing, Stevinus wds a. Iﬁltchma.n. We conclude tha.t the chain
is in equilibrium. R oo _ ' : : ST '--‘

And since the whole chain 1s 1n.equllibr1um, the lower portion ADC ‘
is. Moreover, the chain being completely flexible, there is no resistance

; _Qto bending at either A ‘or c, so that ii: hangs symmetrica.lhr below AC. »

O
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Consequently the downward piJll on the rticles at A and Q are equal

conse‘huently ~hen tne lower portion ADC is removed « the upper portion _-.‘m'-w..

ABC will persist in equilibrium. This si'tuation is 1llustrateg1 by Fig._-.6.

D . . B . "
Tl S ) o
: e L. . R A Y

0 . RO Tt
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But obviodbly the equilibrium of the chain ABC will bevundisturbed

ot

by‘extending the triangular prism over which 1t rests. See Fig. 7.‘5

Hgne7

' Whether or not .AC is a base edge of the prism does not matter at all.
What matters is that AC is horizontal. Suppose, referring to Fig. 5,
that AC 1is not hor1zontal. Since AC "is no longer hor1zontal, th ‘lower
portion of the chain ‘does not. hang symmetrically bélow AC, so that the _

" downward forces acting on the particles at A and C are unequal. Conse- -
quently when the lower portion is removed the upper portion ABC -is no '
longer in equilibrium. ABC is in equilibrium if and only if AC. is hori-

e N

‘zontal. - - . .
In short Fig. 7 prOV1des the answer to the question of Fig. b, Sinoe,

.'in Fig. 7, AC is_parallel to A'C', the sides of triangle At BC' are di-

vided proportionally, e S A CoL
, x CBoi, :
. . - : AB-~ &'B
" And since the chain is of unifdrm density, _
e h ‘ .. ) . . ] ] im— _ E o . . i .
: : - EBTW - o .
Therefore, N S o ' x o
. w _BC' v oo '
W TR )

The ratio of the weights is that of the lengths ‘of the inclines on which
. the weights rest. .
Yet this conclusion holds no matter what the (arbitrary) inclinations
" of A'B and BC'. to the horizontal., Consequently equilibrium will still be

..69?" .

'
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¢ maintaj}\ed even if BC' 15 vertical, provided only that A'C'  remains.hori-T
zontal %is &i‘tqﬂ.tion is- illustrated by Fig. 8\ ‘ o s ) .
‘ - o . = .
. ]
- in::‘ :, . t{
- W8 S 'y
: ,
g
.
' . u )
. ~. -
3 . .
. : . , *
3 . ﬁ / T e
o
. , . , a. °
. '“ 1)
. -. .
v N ]
’ : ' o Figure 8 s
N i I i K
. Here [ ' - . . . o " : 3 i 7 . 'Y ‘. ) .
. 2 ? | BC',' o : o -
. . _ FE = sin g .
. Yoo R S .
. Sotmtw (1) C - S e ' - ’
' = ' ;m=s8inag - : ' .
.v | :“ '~ ' s . w . ‘ . ‘ 8 . “.
giving . - : S o
» - . X .
' N w=W-Sin Q. P ’ (3)
Tt remgiud Iﬂez‘ely to remark’ that ‘the counterbalancing tension%ctinnz at B,
}
and cgnﬁe%gntly the equilibrium of the system, would be unaltered if th%
. homogenﬁoﬂg thain vere replaced by a weightless string with a weight W at itd.
» left E.nd 8 ,;gight w ' at its right. We conclude that equation (2) is the 3
answver '50 h}de Droblem iq.lustrated by Fig. ‘1 and to the original question = .
!
. MHow doﬁs tpe Dull (or push) to move a heavy body up an incline compa.re with o
. the forfe \geeSsary to 1ift it directly?" T . .o
' It 3% prudent to check conclusions. (3), when a=0°, sin a= 0,

80 th&t ¥ ~ 0, and when .d: 900, sin ¢ =1, so that w =W 'Ste\.rinus'-
'formula 19 ortect for'horizontal and vei‘tical planes. We have reached the
‘stage, éh‘vggqﬂeht to theorizing, where precise experimental measurement is®

» .approprﬁﬁm »-‘to test the. theoretical results for intermediate cases, . At .
‘this Dotub é‘tevirxus had a theory to test,: and tested it. The theory satisfied

706 -
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‘the exa.miner.' - T - , .
5. His solution, obvioue to hindsight r%quires the foresight of genius.‘ .
Ve cannot force ourselves "to’ get such bright -ideas.

. The substance of this account of the inclined’ plane as that of the
following section on the lever, was taken from Ernst Mach's Principles of .
Mechgnics, of which a good Eng‘l.ish translation . (1893) of the original German“

(1883) is available. Mach besides being an 5}’19 pﬁysicist whose experimenta.l

SRR S, — S I

work on sound - is commemorated by the Mach unit was the outstanding philos-
opher of science of his day. To write this treatise he hed first to read
Archimedes in the, original &'eek, Galileo in Italian, Stevinus in Dutch and
qthers,’ in La.tin. .Modern specialists claim that there are a few points on

) which he misu.nderstood the original texts, “but when we recall that he was
prima.rily both philosopher and physicist rather than linguist occasional _
misinterpretation ig only, to be expeeted. Despite mino,r blemishes, it is a
remarka.blé work by a remar}qa.ble man: to me the most fascinating book I have

' ever read for I read it at the right time, when young, but net oo young.
It demands very 1ittle mathematics, but lots of common sense. It merits ’
befng read geveral times. - : . ‘ b

- .

0212 Tever , ' ‘
‘We are a perve;‘se lot. Although Archimedes (287 212 B c.) is aclmowl-
edged as the greatest of the Greek mathematicians 2 it is customa.ry not to .
credit hiim with what he 8id do and to c;‘edit him with what he did not do.

.+ His ingenio%s methods of computing areas and ‘volumes brought mathematics ]
to the threshold of !he integral calculus , yet the textbook gives full
credit for the calculus t30 Newton and Leibnitz. He initiated the science
.of mecha.nics by discovering the con‘dftions of edui‘librium of a’ lever, yet ’ ‘
it oftén 1s said that he disgvered the lever itself-- despite Egyptian . ‘S
pyranid builders using levers thousands of years before he was born. an

Here I propose to.do no moxe than introduce the reader ‘to the train of*
‘thought underlying Archimedgs' aiscoyery o fne conditions af equilibrium of
a lever. For a complete acﬁount of his theory of Levers, read Ma.ch. L
Although in c.onsidering weights suspended by strings from a beam or H
lﬂver bala.nced about a ﬁJJ.cmm, Archimedes never ac&ially says so, context .
" makes it clear that the lever itself is supposed ta be rigid and weigl'rtless o
and the Btring weightless an& flexible.- We find inevitable idealization.

%is style is mathematicgl 3 he begins with explicit statement of his additiona],

non-c.ontextus’.y implied assumptiis. The first of these, consiﬁered so

obviously true as to be termed axioma.tic, is : - :
> - 'R ) 4

L7y . 2] .
‘\ . '... ; “. 71‘

o




Axiom 1. 'Equal weights at equal distances are in equilibrium.*
. . ' . . . v. T

It s of course understood that the distances are measured from the fulerum

and that the suspended weights are on opposite sides.. Fig. 9 illustrates
this axiom.< e ,

-

. F .
1 ! )
N . "j‘\'
o Figure 9 .
This a om raises two questions. The first Do we beliéve’it?"?Is it
z'the right uilibrlum of equal welghts? ‘But think a moment .

There could not be a correct rule or ‘an- 1ncorrect rule if there were na-
rules at all. So there is a second, yet logically prior, question:_,Kre'
rules‘possibie?_ It is tempting to retort, "Of course there must be rules,"
Of course? Must? ‘There is no must about it. We do not kmow. Yet without
rules there could be nothing properly termed sc;ence, and with no science
to pursue there could be no pursult-of science. We take -it as an article
of faith that science is possible, that there are rules; - :
Let us return to the first question Is Axiom 1 the correct rule
. For ,equilibriu*f equal weights" Obviousi].y.: We all know how to veigh a
pround of ‘bacon with &, pair of (equi-armed) scales. _Archimedes has merely
made articulate our cdmmon experience. . So his rule is "obvious" in the
'sense that ve are familiar'with.its exemplifications. -And vwe are all famil-
iar with boiling water changing into steam, obviously boiling vater makes i
_steam. That it happens is obvious, why it happens 'is not obvious, Ihat
: Axiom 1 applies to scales is obvious; why it is appliceble is ‘not. .
This brings us to the principle of sufficient, .or if you prefer, in-
sufficient, reason. This principle is 1llustrated by the story of Buridan 8
ass, Buridan was a scholastic philosopher vho is novadays remembered only

B .
LA ‘v_ ’ X ’ . . . . . ! LA

¥The Works of Archimedes, edited by T. L. Heath (Dover), p. 189.
. » B . . .

T ’ 72
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becaﬁse of his ass -- even though it is far from certain that the story of
Buridan's ass is Buridan's story.. But no matter whose ass it was, the poor
_creature found himself equ@dlstant from two 1dent1cal bundles of hay. Sym-

metrically placed between these equally sweet -smelling bales, the pooTr ass

" could find as much reason to &0 first to the one as flrst to the other and no

more reason. to ga first to the one than first to the other. And so, as’' a
consequence of the principle of sufficient, or’ insufflcient reason, it died
of hunger. ' T

We turn from Buridan's ass to Archimedes' lever, Lever, strings, and®
weights being. symmetrically situated with respect to the fulcrum, there
is as much and as Iittle reasonn why the right weight should sink as the left
should. Suppose that the right-hand weight s1nks. But which veighty’ is the
right—hand weight° View the lever from the other s1de and the s1de pre-
viously said to be the right must nov be descr1bed as the left. Thus a
.right hand rule is inconsistent. So, similarly, is a left hand rule. Such
rules depend uphn the point of’ view of the observer, yet the lever does not
care whether it} is observed or not. The only cons1stent adternative is
Axiom l.‘ ’ o ¢ . ) . ot _ .

“Archimedes makes a second explicit assumption.-'lt may have begn sugges;
ted by the following common experience. We all know that it is easier to
carry a ladder. with help then to carry it alone. Una351sted you take the
whole,weight on your shoulders; a8sisted, you share the weight with other
shoulders.' Consider carrying a (uniform) ladder with & fellow ladder car-
rier, ‘one of you at each end. Who takes the greater weight? Change ends,
As far as your shoulders can tell you take the same weight as before; you
share the weight equally. Thus we are led to argue that in the ideslized
'case where the ladder carriers are twins with shoulders the same height.
above the ground -and so forth, the- situation is perfectly symmetrical, 50 .
that each pair of shoulders takes exactly helf the ladder's weight. Carry
the ladder without help and.you put your shoulder to its midpoint to bal-

o

.ance it, .

Let us turn our attention from supporting shoulders to supported weights.

We conclude that the equilibrium of a weightless laddér rod, or beam with a

. weight ‘W suspended from ‘each end will be undisturbed by replacing both

weights by a single weight 2W suspended from the ladder's midpoint. And
conversely of course, W% aﬁ the mideint may be replaced by W at each
end without destroying thd egﬁilibrlu% This is (esseqtlally) Archimedes .

sec nd a?sumption. The coﬁtext understood we may put it tersely as

T g TR . M7

e : o ' : Y : . .

s
-”
¥g

.
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.

(A) W .ateach end = 2V in the middle (with equilibrium),

This assumption is illustrated by Fig. 10.

-

I

= |

~ ce ’ - S Figure”lO
) _ From Axiom 1 and Assumption A, or rather from & generalization of the
e first Archimedes’ La.w of the Lever is deducible. I shall give some insight
S - of the method of proof for the general case by cpnsidering specific examples.
. First, study Fig. 1. - .

B . r
. B F B! A
:
: W ' W
. Figure 11

'I'he five equal weights are supposed spaced at equal intervals, say,. unit 'dis-

tance. The- whole rsystem is symmetrically placed with respect to the ﬁLlcrum : .

. and so, by the principle of insufficient reason, in equilibrium. We have an
S al'te'r,native argument. Since by Axiom 1 the weights at A, A' would in-the

‘ absence of all other weights ensure equilibrium ‘while similarly the weights
e at B ‘B'. would in the absence of all Otner weights ensure equilibrium, as
»',_ would that at | F. we conclude that ‘the weights at A A B, B, and” F,

e together ensure equilibrium
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By Assumption QA) the equilibrimn‘of 'the segment AB of the lever 1s un— ,
changed by replacing W at k‘and at‘ B by 2W a.t C ? consequently,_‘  ‘.\“{,

..;

l " 1ts frpm the i‘uicrum

m-”‘!ﬁmm i0s other- gide.

#‘2w1-1-

' Ba

e

i weigl“lt‘ distance from ﬂﬂ.cru.m
' d
;] . Le§ us consider another. spec:\lal i

\' . ‘/ ; S ‘ ANy '_Y.‘
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o . ‘ . A
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. .
o '.'l . ! ¢ ot
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.- . : Figure 15
L. B .

Assumption (A) the

equilibrium of BA'
and W at, A"

by 2W at B';

3W act ing at

But

A
l__‘:
T

1s unchanged by 'replacingv" W dt

5 units from the fulcrum bala.nces
unit i‘rom it ‘

- ,‘," “,-‘ - . 76 :
.' ‘ , ”rw':‘"v.‘“. C . .
Q ’ ’
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"1.é.,'a351n': o o : J”:'ﬁ‘ v R
S S weight . distance - weight . distance. _ ;;;;

‘Note that multiplying (2) by 2 gives (l) or - T

L U Ci (L RICEE IR

i,e., C ;__ :

' w-3 3w-1.,

bIllustrate this alternative interpretation and use Archimedes' ‘axiom-to show

‘that equilibrium is obtained We can conjecture on the same general condi-

"tions for the equilibrium of levers. PR s

. _ Section 2 Vectorsv'_' ST R

;- . | ———— ) R . - . C-_
. . N __}

The notion of a vector arises quite. naturally and is'basic to physics and

. indispensible to applied mathematics. That it 1is clear from the outset
© -that vectors aré good for something mekes the topic readily teachable at "
: an'elementary level. That vectors are'becoming,part.of the high school N
' program is a rear:step forward.- N o » . . l
. " We begin with an example. A man is to cross a river from the left '
bank to the right.. Too lazy to row, he uses a motor boat. If his motor.
:fails to start when he casts off “he will drift down .river: with the tide.
;bLet us ‘suppogs him to drift AB. .in upit time. Seé Fig.,l6

ot L
R IR . ) o
R : LY L o : !

. A E
\ e e
- . b4
ki | &
T 5 .
B o V(/ ° 0 ///J.#'~
4 e = |~ 5
Bl al [ 3 .
: ] N
, & -
LIS g
A ‘ -
. ',.A LT ':'.' '..Figure 16
“If it is high tide so that there is neither a. current up nor down river,v. ~;'

Q,and his motor 1is working, he will travel let us say, .AC, in unit time.
.'_But, if both tide and motor are working, h1s boat will have velocities

.8 . Lo L
: w0
A




*»

due to both. Where"will it'be at. the end of unit time? - .
‘ The - answer .comes quite. naturally. Consider a special case., A,boat at
A. heading up river at, say, T feet per minute (about 5" m, Pe h.) against a *
down-river current - of the same velocity moves neither up nor down r1ver, %‘
w1th both velocities simultaneously 1t stays put relative to the river bank
At the end of a minute it ig in the same position as it would be at the end
of-two minutes Af it moved solely under the influence of the current with
no motor for the first minute and under the 1nfluence of the motor with ng .
, " current for the second minute. In the first minute it would move T feet down .

‘river with the current and in the second minute 7 feet back up the (now

currentless) river.. Thus (at the end of two minutes) it would be in the same. ‘f;

position after current and motor acted successlvelx (for a minute each) as it
would be after both acted simultaneously {for a minute) In short "the re-

0

sultant effect of both forces, current and motor, is that of each acting
“independently of the other.b .' . ‘ ‘
Thus, returning to.the general case of Fig. l6 it is natural to suppose :
that the boat will at the end of unit tlme, say, a minute, be at D, where ‘

‘e - s

: ABDC is a parallelogram. See Fig. 17. - : _ ,

o

I
I
o]

Stream
Right ~Bank

RARRIRR

“Left Bank

 SITTIREIRINT -

.Figure l?»

. . : "_ s 14 ‘ ‘ . .
. : ) .

'In one minute the boat acted on by current without motor ‘would drlft to ﬁ;f

I3

'B in the succeeding minute acted on by motor without current it would g0
. as far as (and in the same direction as) 1f it started from A instead of
B i e from B - to D. (instead o6f from A to C). .So, under the forces

due ‘to current and motor acting successively, at the end of two minutes,

78 S
Q ‘. .
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it is at .D. Alternatively conceived the .A ing at A, acted. upon

¢, and in the- succeed-

i“ng minute acted ‘upon by current without motor would drlft a distance . fl'.;‘.
' ”(from €) down river equal to £B, i.e., it would drifb from ‘C “to D

by motor without current would in one minute d

.Viewed either way the successive effects of current and motor (each acting
'for one minute) 1is for the  boat to reach D.‘ “Is* it not natural to conclude
- He thus arrive at 'Ehe Pa.rallelogra.m Law :of Displacements. L .

_ _‘ Iq half (or double) the time the boat's\isplacement down river will
‘_'<'~'be ha’lf (Or “double) AB say A_'B' and its "across river displacement
.- half (or double) AC; say % 50 that the boat g positlon resultdnt

.. from both displacements will be'\‘?‘ where AB'D'C' is a parallelogram of
:..'Sid.-?s half (or double) those of. parallelogra.m ABDC- " See Fig 18

/ » U / L .
-z S N
- = 2
S 'ﬁsli%e" 8,0

More genera.lly, since no tter what the time. in question, the ratio of< »

AB' to AB must be the same as that of CACY £6. AC, the position D*

vresultant from both the displacements AB* .and. Act will be such tha‘b ‘
parallelograms AB D'C' - ABDC, and hence triangles AC.‘D‘,\ "ACD o.r,e_. '

Q )
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It fol.lows by 'obvious geometry that D'- lies- on AD or AD pro-

We conclude that the path of the boat is actually along. AD But .

AB and, AC are the. ‘distances- the boat goes down and "across" river in

unit time ‘one.-minute s 8O that these displacements represent its component

-

velocities in these’ directions, and AD represents their resultant. We ¥
have the Parallelogra.m Law of Velocities. ' v

" Displacements and velocities are remarkable quantities. In additlon

to having an amount or magnitude they have a directlon or sense, 50 that it 15."':.:
is natural to represent them by directed line segments, or, as we say, ol ::
‘y‘ectors.. The direction of the: quantity is. indicated by the’ direetion dr s T
e i;he line. segment,,the ~magnitude Qf the quantity by the length of the line » .
segment., Precise,y because displacements and velocities are 'both veCtor . o
quantitles, the resultant of a pair of either is repr!sented by the diagona.l L
of the: parallelogram through the common pplnt of the sides representing the.

pair. Many important physical quantities are of the same nature - Boxers -

know the difference between receivin,g. a straight right and an uppercut,

“the direction of ‘the blow can be .crucial. We must antic1pate R Parallelo- .
gram Lew of Forces. Consider the s1tuat10n 1llustrated by Fig.; 19‘ R R

»

a4

'Ehe particle at A is. in equllibrlum under an force _ ‘
“a ‘force W2 along string AC; and’a. f'orce W al._ n "‘,"’Si'nc'é:"f?" ,\;“
A is in equilibrium under’ the action qf these three f roes; it must be'in .
equilibrium under any ‘one- of them and the resultant of ‘the other f,wo, in"

particular, A must be in equl]}ibrium under the action of the force along’ - ﬁ 9

-3
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2 AD'" a.nd the resultant of the forces along AB and AC. - But. it is clear " ) i
tha.t A Will be in equilibrium only if this resultant is .equal- in magni- L

tude to the force along AD' and acts in’ the opposite direction. . See .o

'Figaré- 20 . P S

o Exp’eriment confirms our expectations.v It is found that~ ir AB, AC, cand. -

. -,_AD' are of length Wl, Y and W units respectively, then the' fourth

.":vertex D of the parallelogram withssides AB, AC is such that AD is
s units and, D' A, D, “are collinear. “In short, 1f AB, AC are vectors

representmg COﬂlPOr!ent forces in magnitude and’ direction then the d:.agonal _
AD of paral‘lelog_ra_m A?é is~ a vector representing their resultant in mag-
nitude and direction i ol : ' - . - :

v Fas

Of coursée an element of 1dealization is attendant upon this e)gperiment

e

‘as on any other. 8 ]'_n sugposing‘ t‘he weights to’ exert forces l’ 2,
A,- we assume the étx,;ings to be we:bghtles,s and perfectly flexible, the :
‘.little pulffey wk;eels to be friptior‘fl.ess’ and 50 forth The nearer actual"
<conditions af'eﬁ made to approxima\te to the ideal, the more exactly is the
"Parallelogram Layr verified R -."«_-- T & e e

R
. < -. Y R to AT . . .
K . e ! ,:p. R Lo e -
= - & [V

2 Inclined Pland) N T e

Won

o [T . . .

7

Consider a’ body of weight W> in equila.br“ium‘ qn a Jrigid frictionless
, o I
: inclined plane of/.ngle Q. -8s !llustrated by Fig.” 21'

N

O
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) a force of opposite direction (but equa.l magnit?:tde) to the resultant of the ‘

‘A’ is normal to the ;lnclined plane. See Fil 3 _22(&)
5. :

he usua.l idealization, we infer that the tension in\ the stri.ng is w

throu8hout What 1§ w interms of W LR
'I'he body is: in equilib!fium under the action of three forces ) its own

weight W gcting verbically downwards y the tension L in cthe 'string acting

up the plane' and R the reaction of the plane., Since we suppose there to -
be no friction between the body gnd: the pla.ne, R cannot have a- cormponene sy
force along the plane- R must be normal ta: thé plane.' A.'Lso i R must be .

other two forces. But by the Parailelogram Taw of Fbrceé" the direction . '

. of the resultant of the othez' two forces (as. well as its magrritude) is rep--, Sl
resented by the. diagonal through A of the parallelogra.m whose sides with -

common vert;ex at A represent W'- and w. Qonsequently, the diagonal th'i

AR

o




R -~Figure 22(a). o ... ... . [TFigure 22(v) .
. ' i . . .ﬁ_' 3 N . s o . "‘ T . . e "
! FTom Fig. 22(b) e have that’ ¢Q¥UL AXEF are each complementary to ~ZEAB, .
‘,so-thati - /BAD = as and that since ~BD’ ll AC £BDA = 905.. Hence, since " v
TS AB =W _units, BD = AC.= W units, considering AABD, - ' 4

* - Lo ' . ; ' ' N - co
: e S ' : e T

o . XZeginag - -
- P S W S ‘ ‘
v -so/that o e S g ' : . L - SR g . .
7 ' R ' N Tw o= W.f sin a17 R ‘ N s

o "L
\
4

RN Lo ‘ o i . . o
*'M.“‘; .

_&Although Stevinus foﬁnd this result- in~a most excitingly original way, his
‘underlying principle has the disadvantage that it is far less readily. appli-, .

gcable to other problems than the Parallelogram Law. ' R
222 Pulley o : : S .
4 ﬂ;'. A system of pulleys enables us to’ lift weights too heavy to lift by - '._,“
. unaided muscle power. Suppose, for example, you must remove ‘the engine .
'from your car for a major overhaul.' Rather ‘thaa- try to lift it, you could
fileas strenuously hoist it out by thexpulley system illustrated by Fig. 23 i
4 ., e e
? -~ S @t .. . i ) ‘3 #
1 . » U . Bk ~ : ’
. . 0 - PR &
s . Y v « :
s . o N - e . J
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~ As usual we' suppose idealized circumstances‘ that putlling at el will
“1ift up the engine rather than bring down the roof. With frictionless
pulley wheels (the center of A begg fixed in pos1tion) a;:é weightless
q' rope_, a downward force of w at c will give the rdpe a tens1on W through- -;- R
3 out, so that B’ when in equilibrium will be in equilibrium under two upward “

forces of w' and a downward forg:e of *W. 'Thus, : ° e ' ’
' < ’ L . . . ! - ~' B . .
o '_ :'w+w='w Qe . P )
N . gi-i - Lo . . ‘. . . . ] A , ' ) EY . o E
iving, . o L CR LT N
EOOSTER o e W
-' .7-’ < .' "_Wt . \" ) ' M .

With any increa.se inf w, the g,engine is hoisted o s,
: "Note that this rEsult is 3a consequence of the Pa,rallelogra.m Law of .
. =X Forces if we ‘neglect the dimensions of‘the pulley. 'I‘he resultant of ‘the '

two upward forces, each w, is. given by completion of the parallelogré.m )
oSeeme . o P
. » ‘{ ) r T . . " .
N ' \ o > o
.& ‘ AL R ‘ g
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Here we suppose the forces w to be equally inclined at an’ ang{l'e to the ..
vertical AE in opposite directions and investigate the position of D when
When "AB,’ AC B and C Dbecome
coincident, and CD Since it must remain paralXel to AB, will lie on 'AE
But CD‘ must remain equal in length to ﬁﬁ 80 that AD - will lie along AE
and will be twice the length of AB. Thus, by the Parallelogram Law ‘the re-
sultant is a 'force 2w scting vertically upwardd.

‘Tt .is left to the reader to show by means of the Earallelogram Law

6. decreas®s~to zeTo. collapse on to AR,

that the resultant of two equal but opposite forces is zero

-

o
223 Lever PR

. We already have some idea ‘of how Archimedes deduced his Iaw Of the Lever. -

o Let us derive ‘thig by applying the Parallelogram Law. . SN
But ‘first a word about rigid bodies. it i evident~that a rigid body - B
g will be in equilibrium under the action of two equal but opposite, forces

‘See Fig. 25 o

e

' acting on the same particle’ of it, say, that at A.

) v
t . RS

’ “ ..s\' . ' . .v ' . Rh’ | )
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Figure 25 e
& . .

l Yet we all know that in a tﬁé of war, different meﬁbers‘of our team pull on

. the rope .at different places Does this matter? Of course not.  B. will
still ,be in equilibrium if the points of application. of the equal and opposite
forces are at, say, A? and A", instead of both at A. See Fig. 26.

?

LY ‘
I . -
P
. . \ ‘e .l ..
9 . . . F3 o
NS S
° 0'—%\'
» S ° 1 A
. ‘ﬁ! . . . ) * -~
N Figure 26

W e . A
It does not matter at all where the points of application are, provided that
: the. two equal opposing forces have the same liné of action. The ‘trans- _////
_g\ ‘ missibility of the forces at A' and A" is due to. the rigidity of B.
B The reader will more fully appreciate the importance of this princi-
ple of transmissibility when he. has seen how it enables us to deduce the .

condifions of equilibrium of the lever from the Parallelogram Lav. To this

T .. ,,*‘ N

0 A : .

P
3

‘9

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

L]

-.pended gt A and- W oat]

.deduction we now turn.

The general pmblem may be stated as follows. What are 'the' conditions
for the equili‘brium of a rigid weightless lever AA' with weights v, W

3 .
suspended ‘from A, A"Z At what@oint of AA' 1is the fulcrum- F, and %hat
E force must F exert on the lever'Z Archimedes Assumption (4) s illustrated

by Fig. 10, _suggests ‘ of the answer. ‘In this special symmetrical :
where w and, w' are’ 1&.1 an upward force equAl, to the sum of the i&é\ts,

acting at a fulcrum at%ﬁidpoint ofl A, qreceives equilibrium. -Does not
__this suggest in ‘Ehe general.case an upward force of w + w'* at some point
F in AA"? Yes, ‘but which point? Wben w and w' are unequdl, symmetry
s destroyed F is not the midpoint. . Our intmduction to Archimedes'
treatment of the lever shoul,d enahle the regder to anticipate the specifica-'r
tionof F, - % ‘ LR
.To apply thé -Parallelﬁrsm Law t’o determine the resultant of ®w -sus-
RY, we re‘present these forces by lines AB, A'B',:

drawn vertica'ily 8ownwards , of. w. and W' units respectively,- ‘thereby rep-

a resenting' these fordes in ‘noth magnltude and di&‘ection. Immediately we are
confronted by a- difficulty. Since AB, A'B' are parallel lines, no matter i

4,
'how far they are extended they camn fntersect we cannot construct a para-"-
llelogram 5 obtdip their {esultant 14 " See Fig. 27.

e L

) LI o Do .
. 5 ‘ % R " : SN
A ) |

o
9

. : Figure 27- . . =~ = . ¢ L

The difficulty is readily overcome. If the forces W, w' were not
parallel there would ‘be no difficulty.‘ We must su‘bstitute equivalent forces

i .(i.e., forces with the same effect) that are not parallel, -Can we compound & .-
' ‘..' forCe with | W ~and a force with wt to give non-parallel resultants with

B ‘the same effect as*w and w! now have? Suppose that at A we Ft‘mduce

- . two equal but opposite forces;.one in:the direction "A'A, the other in- the
T direction AAY, 'iEach of these annhs the effect of the other, equili‘brium

is undistur‘bed. 'But ‘by the principle of transmissi‘bility, the point of

’ - B . ’ . . ' 8 ,:’

. - : ) ) ) S . | - .

A
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application of one of- these hay be transferred to At provided that its ' 0
magnitude and- direction are unaltered Neither force wing the tug: of war, Lo
s 'I'he vector representation of the new situation is given by, Fig. 28

n gextended rigid, but weﬁ&htl‘ess 5 body.|,,' Being weightle\g\, nq,z.new

1 ke Fe . R :
; tro%.u(:ed, syvthaﬁﬁQuilibrlwﬁ"i‘s uﬂ@isturbed ; be ngy!rigid .
v e ) : .

t}i'agﬁmissible, SO, that t'heir };‘oints )

e .
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LAty

tercht at""M e cad _t
M wil,l not in gene?al be above the midgl}e of Aﬁ.'

u,-l'n‘ ot }": .‘,:
‘ vpoin‘b) ’:I‘hen we» y, “without ‘¢ g:e of effec‘&’, ,replace the forces WE ;
1 points of appl'icatipnw ax; "Aj by foz;.‘cés ‘of. the_ sa.me magnitude nd
e

direction. whoee coulon p,gint ‘of. ﬁplication is M oTh; vécbg“?;k@’fth :'f'.

t Jhy

pg[:nt 6’1" inte;rsection qﬁ.' although,.";

e 8 the g

GED

. -acting at. M- a¥e the dlrected lines : ere se;, MD =‘A'£D :
_ ; " 3 @
and ’ MD'=;ADQ:.,,‘;! WY - .
Bﬁt MD ‘,may b@; res 3 d Ant two component vebtoxs (i&entical wﬁ:’ch
'component vectors oﬂ AD cept For pon}k of appli,cqctlo,n) for MD .
the same- magnitude and - dlrec‘%lon as -AD. Simila.rly, D 'f‘has ti]e components I
-of A'D' ‘See’ FN 30. o ' E . "" ,g&; : ': *‘;
Ay T R A
; ' g o
' ‘-’k Lt . t; ' »
- T % ot L2
- - ‘»-‘ ,_.@.“
A Do -
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. & “ B
: " . . .
- -

O

ERIC

Aruitoxt provided by Eic:



.

a. _ - . Figure 30 .

ut the tug-of<war "forces represented by .AC, A'C' .a_nnulled‘one another; _
éonsequentlir the pair r.epresented by'm MC, MC? _also annul one’ another. Thus .
” the resultant force acting at M is the resultant of forces w and w' a
(equal to those originally at A and AY) acting vertically downwards._ So, -

- by -the Parallelogra.m Law the . resultant force at M is w+ w' acting ver-

tically downwards: " . S ) : \ ,A ’
, . * The interesting question is: Where does the vertical line of action of
- this resultant cut AA'? -Consider Fig. 3L

.A{
"
: ‘ ) A
' Feure 3l . o S ’-
We recall that a line parallel to the base of a triangle diw}ides the sidgs
'- proportionally.- So, considering -AAMN, o ' - ' @%’
-, e i . -
. N N . IS*;. ; U
' : U o
) A g # ’ "

O
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‘original forces v and w!

Bl
a

’/
'
S
5

-

‘and cpnside_ring A :
' _B'D* °
| By W @
From (1), - - S ST
o L meE-
 From. (2), | -
M- MBY =
But, ‘ o
. ., B =M =4AC-=
" by Fig. 30), so that e
o R MY + E = | |
15Hén¢eifrom (3) and (4) o . S
L m e MB =Mt e ME . (5)

We have the answér to our 'question. .
sulta.nt cuts Anr

.

?

The vert;ical line of action of the re-'
at a point N. such ‘that (5) holds. . ‘

But, again making use of the princlpie of transmissibility, the replace- ‘

ment of the resultant acting at
direction acting at N,
but weightless body) uncha.nged°
respectively, is a forc‘b w4+ w acting verbically downwards at N.
course the lever would be in equilibrium ,under two forces of w + w!

the one acting verbica.lly downwards and the other verti“ﬁally upwards.

(5), as F = N, the lever wikl be in equilibrium i e

= 6 d FA.,,- S FAT . MBY. Wt L
Recalling that - MB : AB" _.w, AB' = w_', and putting FA = 8, -
(where a ‘#tands for a ve, finaliy, 2 ’

.,.,g, e a , V. N . .

acting vertically downwards at’ ‘A -and Af,
But of
at N,

M by sa force(of the -same magnitude and
leaves the effect on the lever (or extended rigi'd
e have shown that the resultant of the

Conse—,_

) quentIy, if a fulerum F (suffic1ent to support W+ w ? 18 introduced at

"N," then the lever s in equilibrium under the’ original%forces. That. is, by,

We have» used the Paralle]@gram Law of l&ctors tooderive Archimedes’ Laﬁ .

oT'the Iever,
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-2, 2 L Archimedés’ APPlication of Kis Law of the Lever 'fi"ft' .
\. We have already seen, ingiough outline, how Archimedes Qi'covered his:
. Law of" the Tevers As you know, he was the greatest of the’ Greekrmathema-
ticians, indeed, he was one of the’ greatest mathematicians who eVer J‘yed.
The chief basis of his fame is his discovery of the beginnings of the‘inter
vgral calculus, a discovery brought ‘about, by a most ingenious application of -
his Law of the Leygf
‘The aims, the most Visibleuaims, which g?vg'rise to the integral cafl cu-

“ . . N ’

=)

‘o

) I
]

; lus, are those of ) uting areas and volumes which are enclosed not by

© straight lines li polygons nor by planes like polyhedra, “but by curved

.1ines and curved surfaces.r For‘instance, a problem demanding integral calcu--;‘
lus ig depSrmination of the volume of a sphere, N y is' it the most
natural and most exeiting problem about v6lume; also it is one of the most
_difficult.- Archimedes was’ the first to solve. it. . Why is it 0 difficult?
Wha% on earth has this to do with' levers‘7 '

One question at a‘time. Why. so difficult? Compare the sphere with ' .
other volumes, say the cylinder and cone.’ Whereas the sphere is round in
every direction, the latter are, 50 to speak, merely half round. The-lateral
surface of a right ‘cylinder can be cut ‘along the’ straight line element AB,
peeled off and flattened out into a rectangle Wlthout distorting it. See

/

ln &, ‘ -~ - [
B - v N Y
e : ) . . 3 3 -
- . . C.e
; X ?- - 3.
: Kl i o
. B < L\ Bl
. | ) e
> : ’ B
5 o Figure 32 o i ;
» S . : . "
Q ",.' Similarly the lateral surface of a right. cone cdn be’ cut along the straight-
”g:' line element OB, peeled off, and flattened out into a circular sector with-
' Qut distortion._ See Fig.' 33. o B “ . . Y L !
; £ T ’ LR
: xu. - ' '.’ i ,'
’.,\‘ ' a H v e '_
.‘s . V
' : R ..\'-.,. i Ce
N T C }7 : - 3
~ "2,
o ‘;’
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vat so, the surface of a sphere. We have all'peeled oranges; That the

‘-‘sphere has a more complicated sort of.surface suggests the computation of

‘its volume to be more difficult

.
.-
P

. The second question,‘"What is the relevance of levers to determlnation
":of the volume:of ,a sphere?",.cannot be answered 1mmed1ately Every problem :
: 15 Viewed. relative to a framework of associated ideas. First ‘we must ask '

‘;ourselves What, for Archimedes, was the COntext of his problem? How did

'_»Archimedes, his mathematical contemporaries, and their mathematical pre-

ikdef;ﬁsors conceive’ volume°f - oo S < .
. -.Well of what volumes do you know the formulae? Certain volumes are h._f;_.n .
l_]easy to find, for instance, that of 8 rectangular parallblopiped-- in brief .
;'a box. : Its volume is the product of its length breadth and heighth And ;
. do you‘know the formula for a right prism° But first what is a right prism?
.It is a solid with a (plane) polygonal top congruent and parallel to its
:Bgse, and- lateral faces (parallelograms) perpendicular to 1ts base. JIts’ {
volume is the product of its base area and height. Note that a box is 8
“prism (with a rectangular base) ang therefore the formula for prisms is appli- "
cable.‘ A tight cylinder is a solid closely related ‘to the prism. TIs it not » : f
vvisibly evident that as. the number of sides of the base of a right prism whose;

base 1s a regular polygon is increased, the prism approximates more closelywto.‘

_a right cylinderv _Doesn't this suggest that the same formula applies to° __'(7
- right cylinders? ‘_' _ T : . : - o ._jTl
A pyramid presents a ‘much more difficult problem., The formula for 1ts v Lo
’volume is one-third area ‘of its base times its- height. Here, likewise, it oo
+ is visibly evident that as.-the number of s’s of a pyramld with a regular - t
' polygon as base is increased the pyramid approx1mates more closely to IS A
JZ xv" o S '-'}“r | i T‘ - g ;l'l,--i' '.'. . R

O
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preserve several of Eudoxus' proofs..

.Herein lies the clue- of the relevanc? of levers to volumes._ : ;’?'«l,. o

'\na;me before, it is more 11kely that you heard it 'in a phllosophy lecture .

L .

ot v .

’ . P oo . ) ’ N . .

cone: -Surely'we must anticipate that ‘the formula,for pyramids_ applies to’

‘cones. ., ., - . TR S SO

Historically, who discovered the volume of the box, rjche prism,. .and

the cylinder, it is impossible to say.' But these formulae-- and even those :
'for the py;ramid and cc@e-- were already known to the Egyptians., They had

_'no strict proofs, but the formulae were known and werg used There is,

howevery somethlng deflnite to be said- about the cone,

.The volume of the ‘cone was discovered by. Democrltus, who llved about

' 1&00 B.C. He did not prove it he ‘guessed it:" the evidence is. that ‘his
: &
s guess was not' a bllnd guess, rather 1t was a reasoned conJecture.. As Archi-

"_medes has remarked, great: credlt is due to Democrltus for his’ conJecture . .:3'

since thfk made proof much eas1er.' Budoxus (1&08-355 B.C. ), a pupll of Plato,

' subsequently gave a. rigorous proof‘ ' Surely ’the labor of wr1ting lim:.ted-'

"his manuscript to a few coples, none has survwed. In those ;days-editionq

especially, bhd boOks —-do. However the substance of most cﬁ\ what he wrote
is neverﬁheless avaj;lable to us, ° Euclld who °l:1.ved ‘about, 300 B C., wrote,

“to the knowledge of every schoolboy of my- generatlon, The Elemants of Ge%me- '

’bry." Buclid's great achievement was the systematization of the wo?ks of his

N

did not run to thousands or hundreds of thousands of-. copies as modern books -

predécessors. Hls compllation includes qu1te a lot of thlngs »besides geome-

. try, the  Greeks understood the term in a more generous sense. The Elements

. : 3 e

L

- Archimedes stud1ed and pondered deeply the works of h1s predecessors,

To- find this clue we go’ back to Democrltus. If you have heﬁ‘d his

s

than in a mathematlcs course. He'is much better- known as a philosopher, as«.

‘an orlginator of atomlc theory. Democri‘tus. conception of an atom was some- ,'
thing altogether dlfferent from today 'S phys1c1sts' . For ‘him, \‘53 for the .
- modern phys1cists, the whole world cotsists of atoms desplte the” apparent

contlnuity of. matter. The crucial’ dlfference 1s that the *o*as Democrltus )
yd

concelved 1t could not be split. Matter could, conceptually at any rate, be -

chopped up 1nto llttle blts, !he llttle bits ¥ato srnaller bits, until f1nally

: atoms were. obtaIned these little b1ts were held to be the smallelst possible

—-indiv1s1bles one coUZld cth ‘no smaller

L
N

.
J

9

.

) these -are th,e context ~within wh1chKhe conce1Ved the problem of the sphere..- g
ek

q

-
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‘not solely, speculative, tbere ‘are a.few extant quotations to support us.

First,.reconsider the volume of a’ rectangular parallelppiped, or'box.
How would We demonstrate “to- a chlld that & block’ whose edges are 3, 4 and -
'5 inches has’ a volume of" 60‘cubic inches? Surely, by’ '

60 cubes of unit edge and by pointinghout that weﬁagreé_to consider the'Ff

-

r volume of any such cube to be unlt volume ' We WOuld. in short, consider
the unit cube to be an atom and lhow that the.block in question is made up
'of 60 atoms The ‘only objection is that iﬂ us1ng atom 1& Democritus sense {
we would be implying that a unit cube cannof be- split into _smaller cubes.
:a view to which we- need°not commit ourselves to. effect(nquemonstration.
,.k's Next, could we- demonstrate in exactly the same way that a block
;32" h” X 5" has,a volume of 70 cubic in@hes? Not in exactly the same way
since. an edge of 3i'“
':The necessary modification is obvious We chop the.block into. 560 cubes or

atoms of. Ln

5 edge and then reassemble them to form 70 ‘unit cubes. Thus the

problem ‘of determining the volume of a solid boils down to- counting the . ’:if“

.

number of its constituent atoms' Surely this/was Democritus' basic idea

.Oh - yes, the idea is simple, but the application can be arduous. Suppose"

“‘that we are to- demonstrate ‘the volume of a block 3 l" X b l"'x 510” The"

-.counting of .6k, 321 atoms, cubes of Lo edge, is much quicker said than done.

10

Cne counts up to 37 h28 forgets whether: that vas “the' number of the atom Just':

ounted ‘or the one about to be counted-- and starts all over aga1n So,gwhat_:

Bs, |

"do we dof We- facllitate enumeratlon by dealing w1th large numbers of them ]
ven bloc-~- no pun intended By multiplication we know immediately that a
block with base 3 by h and height 5 has 12 atoms (unit cubes) An the first

..layer, lZ'in the second layer, ey and S0 5:X, l2 atoﬂs altogether vWe

enumerats&theuatOms by first deallng w1th one layer or cross section., Surely__,j

-Democritus thought of this too ~_5- _~' ~:) ;.’-ﬁ."f : L : ot

v.

Wha%‘ for the cone, is a natural layer or cross section? Yes, & layer
Apara lrto the basg So a'cone 1s conceived as made up of adJacent c¢ircular
.disc just one- atom thick 'But here there -is a complication.» Although as
for dlrectangular block thﬁ successive layers or cross sections are all of
-_the same shape, they are not all of the same size The labOr Of enumeration
would:appear to forte upon us the notion of a: variable cross section . ;va

Just:how far Democrrtus developed this notion we- do not know Surely

¢ her knew that a cube can be dissected into threesidentical pyramids, 's0- that
! the volume of 8 pyramid of this spec1al shape 1s "= b ‘base” x»height, surely.he:

'3
must ha‘e conjectured fhat other pyramids and the1r limiting case, the cone,
had the ‘same - formula. ,; L \ 3ﬁ fﬁ%;-ﬁl L A T

(S A

caqnot form . an edge ‘of an, integral number of unit cubes;.

t e,

3
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Be this as 1t may, -.Eudoxus gave a rigorous proaf. ‘I'he proof is diffi-: R
: cult and several lectures can prof'itably be given to’ its deta:L'led expositiong.". -

n‘I’he reader may try to read it in the twelfth bodk of Eucl:.d’s ‘Elements

' Here we have the context the conceptus.l background of Archimed . ‘

‘ ‘, blem to determine the’ volume of the sphere. Aproblem s1milar to ye desf- N
: pite simi,larity, distinctly more difficult than, that of the cone. Th - l_ ‘
' sphere, unlike the cone, is rounded in all direCtions.__ H1s genius was eq'ua.l

_f",f‘ tt “the challenge. s R e ‘. B IR . R
. His method? 2 brilliant applicatlon of. his Law (of Equllibrlum) ’oi‘ the
" "i ver.A lIn accorda.nce with h1s law he a,(gusted the length of the arms of a

A l ver 80 that the cross section of a sphere coﬁnterbalanced both the correB- , .’.
| ‘ding cross section of a cylindeg and the corresponding cross section of ;
one. " Simple? M.though he’ called his: method the Mechaniéal Method he '
b wa no’ artificer of metals counterbalancmgﬁne chunk of sheet metg.l ‘Bgainst
8: air of chﬁnks. “He worked wx;th 1deas, not with tin, hisqmethod- V}'B.S con- N .

ce tual. His corfespondlng cross sections were Just one a.tom thick. P.ray

It s so small that 1f 1t were a.ny smalle«r 1t Would be no s7’.ze at all. .'

Anwh t did Archimedes do?. Wl‘th an ‘lnsolence to logic equale&m,ly by the :

- number of *atoms he. conce1ved he 1rfferred that the infinitely many cmss-.';'--»-
sections that f‘lil ‘the sphere would coun‘qerbalance both the inflm.tely many

. : (corrésponding) cross sections that £i11, the cylinder and -the infinitely :
many (corresponding) cross sections that flll the cone. . He inferre@ equil".l.kb-? .

riu.m~ of: the SOlldS from ‘Equilibriwg of” their cross sectlons. For fhllgl de- )
g tails ‘Ehe interested reader is referred to- Vol. , pp. 155_15‘8 of fhy book

» : L T S
Mathemat1cs,~ and Plau31b,le Reasona.ng

that... He used the. result obtained by ‘h.is Mechanical Method only to discover
the formula for- the sphere f}rom discovery. hé /proceeded to"rigorous proof‘. 't

s Also I must remark in passmg that the notion of a varlable cross

' "9 . N

3".'..:». 7,.ection‘ _as had a long history More than42 000 years later we meet the asw
- 1dea 'of’ Ca.valleri =+ in the- terminology of Leibnitz == of Rassing from J}lflni-
) B . . s #

N "_- - tesimal element to 1r1tegral wh,ole ‘the. 1dea of proceedlng from 1htegrand ﬁ

f(x) . dx tq integral f(x)
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nw selection’ from these with an answer to the perplexed schoolboy 8 question-
Why does minus times min equal plus? i }

One answer to this question is its proof; its detailed step-by step de- .
duction from the a.xioms a d definitions of algebra. But this is not ‘what ° .
your pupil is’ asking for. The proof, if presented, would go unappreciated-
it dema.nds sophisticatio beyond him. o S : "\

R
- His younger brother, pho is learning to count; wants to know what '
Lo+ 7 is. . His mother tells}«him only to be driven crazy with his incessant
"Why?",. "Why?"- "Why?" ‘Is he demanding a resume along the lines of Whitehead .

and Russell's Principia Mathematica proof that 1L+ 1 = 27 Or does he want

the comforting assurance of a demonstration that four apples together witn

geven apples makes eleven apples, followed by similar demonst;rations with .
ordnges, his building bricks, and his mother?s cups and sauce?? ;WhiCu'

.answer does poor, distracted’ mother attempt?

Doubtlessly the "Why?" of your pupil the older, brother though less .
) 2

incessant, 'is more demanding. His question may be many. questions, "How was ’%

it discovered?" "What is its use?", yet the domina,nt demand of his "Why

' does minus times minus equal plus?" is for tangibility. It is no accidental

figure of speech that we speak of grasping an idea, you must mo:t;her the
brother. The lever meets his dema.nd for tangible 11lustration. -
Consider the equilibrium of a (weightless) lever, acted wpon by weights '

.,W W W, Wh at distances 8 a2, 835 8),5. respectively,‘from the ful-,

crum F as illustrated by Fig‘;:. 3L,

‘Figure éh -

Either a weight tends to rotate the lever about F in a clockwise direction’i‘

D {as do w and w3), or to rotate it in tne opposite, anti-clockwise,
; direction (}(as do W2 and W‘h) . The measure of this tendency, the tum-
',ing moment ;- 1s the product of the weight and the length of the arm from the .-
fulcrum to the weight's point of application. More briefly, :
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X S " weight X atm = ‘moment.

';More precisely, .this tuming moment is 'termed static’ moment in contradis-
tinction to that considered in dynamics. Let us characterlze a clockw1se

. moment as positive and an anti-clockwise moment as negative. .
On what does the characterization of a moment depend? Clearly it does
not depend on the magnitude of the weight used to increase Wi is to ‘in- ,
crease the moment, not to alter its characterizatlon. Nor does it depend
upon the- length of the arm; t¢6 shorten a1 is to decrease the moment not
to change) its sign. To alter the sign of the moment Wwe must reverse the.

' ‘direction of the force due to (say) W vy introduclng a'pulley, or hang it
from the opp031te side of the fulcrum To take account of these pertinent
considerations let us term.a weight whose force acts vertlcally dowvnwards
“from-the lever (as 'do - Wi and WL) a p051tive weight, and in contradis-
tinction, a weight whose force acts vertically upwards from the lever, nega-
tive (as do W and’ W ). And to distinguish between a weight acting- to~the

. right of ‘the fulcrum (as do Wi and W ) and a weight acting to the left -

- (as do W3 and WL)(Z\Pintroduce an, x-ax1s coincident -With the lever, with
' origin at the fulcrum, S0 that each arm a is a horizontal, directed line .
segmedt. As in drawing graphs, we consider to the right from the origin to

be\pOS1tive and the opposite direction to be negative. “Thus the arms 8 and'

&, are positlve, '33 and ak, negatlve. > e
Fig. 35 indicates the signs of the weights and the arms of Fig. 3h and
the pharacterizations or, signs of the'correspondlng moments., - Co

N
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uct of’ & positive weight and_a“pos'i'tive‘farm is a pos:Ltive moment. And re- Y
membering the Cheshire cat who disappeared- 80" hastily that he left his/grin

~oe

behind, we may put the matter schematically S | S -

Py

. u"(+-+ +.;' _
* There is a superstition that mathemat al notation must be alwa,ys perf-
" féct. But English with never a‘colloquialism' never :
able; it leaves the reader thing to? do but pass
glish, so with mathematics.hsLe :

ellipsis is unenhdur-
ely listen. As with Ens

t us consider e" grins ‘without the,cats?.

. What is the sign.of W7 Yes, negw veI And the sign of -a?: Yes,.
' positive. And their moment? Yes,/anti-clockmse. So," B ,
o */ 7 o /,,,‘,- - H o= - .. ‘;',' . X . . - .

It is left /to the reader to satisfy” himself-- a.nd subsequently his pupil--.
',.,that ‘cons deration of Wh and &) gives o o R

N
/ . oo o- o= = Ty P N
s // . N . o : 3 . . i .
_~and of W, and a gives * ' i o . .
. 3 3 . . RN W ' ) ',

.

; - -= _ Lo A,','

/
/ Have ve proved it‘Z No , we have not deduced :|.t from- the definitions and

/axioms of algebra.. B But we have shown that it .has an intuitive interpreta- .
tion, that it is applicable to physics, above all, we have made it tangible. .

Of cou.rse, any physical phenomenon whose magnitude is the. product of the L
magnitude of two physical quantities will serve to illustrate ‘the rule pro-A,-
vided that each magnitude is capable of taking both positive and negative

s:.gns. Yet what can be a more elementary, or & more. intuitive, illustration '

than that furnished by the lever? And is it now so very difficult to con- .

jecture how that minus times minus equals plus was f:Lrst discovered?

2.2, 6 Von Mises' Flight Triangle - : ' Ty
.We. have discussed instances.of equilibrium, namely, 1nclined plane, s
pulley, and leve'r, in terms of vectors. Our next example ; a.lthough strictly
speaking a problem of dynamics, is so simple that we include 1t in our vec-
tor ,treatment, of statics. Ourvproblem is hov to determine the air speed of
an airplane. o o ' ' ’ ‘ o
First what do we mean by! afr speed? We do not mean ground speed.

The former is the speed of the plane relative to the air it flies through,

3 - .
- tendency to- give the leve'r a clockwise, positive, rotation, i, 'e. s the- prOd-—

the latter, its speed relative to {he ground I‘t flies over. ', This distinction

is vital tq our problem. To fix-it clearly in our minds let us ponder the
following illustra.tion.
. Suppose that an airplane, flying at constant speed, goes from Sa.n

b

g o
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Francisco to Ios Angeles in lL hours. For easy arithmetig‘,‘ 1et us take ‘
2 the distance to be 100 miles. It follows that the "airplane's ground speed -- '
"___,, or, if you prefer, road speed -- is 100 m, +P+ h. - 'I’hat is, it gets there in, ‘
' . the sa.me time and at the same speed as a motor ca’r would if automobile en<- 3
N ' gines were Jjust a little more powerﬁil the San Francisco-Ios Angeles road
, much 1ess congested ang, the California Speed cops‘ less vigilant Clearly, .
- axi ai,rplane that keeps Qace ‘with a car racing to Los. Angeles at' a road speed
7 * " of 100 m.p.h. ‘must itself have a road speed of 100 m.p.h. - . -
iy o But what is the air speed ©of the plane? 'I’hat depends on the speed of the
P : air.’ I'f the air is still then the plane flies through/ the gir.at the same
‘ speed as it ﬂies owfer the ground. Its air speed is 100 m;p.H., the same
B as its road speed. * . - o o : N
Co . Next. suppose that the car stops for gas and that the plane overhead is
. f,” battling against a‘200 m.p h. head-on .hurricane. The plane, t0. continue
’ “to keep- pace with the car, to remain directly above the leling station . .
while’the car refuels , must be ﬂying through' the hurricane at 200 m.p h' ‘
‘ Although the pls.ne s road speed is .NOW zZeror (as is the car s), its air speed,
" its speed thmugh the air, is now 200 m.p.h. When the car, ref‘ueled ton~ 0 !
tinues its journey at 100 m.p hi, the plane to keep pace with. it must, (because.
its air speed to 300 m,p.h. In short,.the
“air speed of,the plade 4s- the T ad speed (or, if yau prefer, grO}md speed) it
would have if flying ia still ; ir. ) -

'

Iet us now use. vectors t make visibly obvious the relation between the

of the 3-on hurricane) increa

plane's road velocity_ v. (1/e.~, a road speed V in the direction PL), its
. alr velocity ‘a (i.e., an air speed a .in the direction PO'), and the/wind‘s

veloci,t3r - (i e., air movin/g with a speed w'. in the- direction PO) See '
, Fig. 36.

4

The situation i an:—tlogous to that, con51dered"ear11er, of a matorboat '
: crossing a riv74' With no wind, the plane would in, say, ene m:l,nute ) fIy

y R l"G
R ‘ l .
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“from P to 0'.. Wit];v no .air .spt!ed | a balloon would,. in the same time,
-arit wWith £he Wind, from B ‘o 07 dnd wei hgve already’ ‘seen.that ‘the Te-
sultant of simulta.neouS\displaceme}ts is ‘as if they ‘had been consecutive.
Thus,‘the actuai. path of ‘the plane ;is PL,,J ‘.its. ‘rohd. velocity ¥V 'is the re--

. sulta.nt of dts air velocity a. ,and tHe wind"s‘ velocity Ww. As we. antici-

pate, when there is no wind (so that PQ “is zero and L and ot coincide).
the actual road velocity PL "and the air velocity PO' of the plahe, are
‘identical. 1 N S . : :

So, 'Ed determine the air speed of ap ane it is sufficient merely. to
determine. ’its maximum. road speed on a caXm day. The-sns,g is the sparsity
of windless ‘days.. Airplane ma.nu:facturers want to make money as well as
.,planes 3 and 80 cannot afford to sit around for six. months waiting for still °
“air over some hundreds of square. miles in which to test ;the performance of

thein: machines. Enpatiently, you exclaim "Why wait for a windless day?"

: _’I'rue if w "can be accurately measured, as well as v, then 2 18 readily -

calculated by means of a vector parallelogram of velocities. The snag, here,

isy 'to measure W accurately. The practical problem is how to determine ’

. from the road speed of a plane at full throttle in & wind whose velocity E

is not known, the maximum roadq speed of the plane when there is no wind. -
"Quite a problem. It was solved by Von Mises some fifty years ago, this I
well remember as I heard it from him at that time. = S
_ We are now r'eady to hegin introducing his method. 4n airplane. flies at
full throttle from A along a.'triangular course ABC, a flight t'riangle y
vhose vertices-are ‘chosen to be easily identifiable la.ndmarks,preferahly
few: hundred miles from one another., The lenéths of the legs Aﬁ, BC, CA
eing known, -and the time to traverse each one_ of them recorded, the road :
speed for each is) readily calculated. - But of course the directions of- -the
legs are also. known, so that we know the three velocity vecto‘rs: .88y, _\71,
Vz,.V3 See Fig. 37. And since the plane was flown at full throttle , its
air speed a is its maximum air speed How is a to be determined from
the data? ' '



Lo mgwest’

It 1is important to note that although- the velocity vectors are :represented .

in direction by\t‘;‘e‘side of the flight tria.ngle ’. they are not except when

) _there is no wind all, represented in magnitude’by them. We use a.rrows/ : \
" din Fig. 37 as a graphical device to imdicate the roa.d velocity in direction

e

E '.'a.nd magnitude, Suppose, for exa.mple.hthat in flying the longest leg BC

‘the plane hs.s a head wind, In consequence, in flying ’K} the a.irpla.ne’ 'l.;: .

roa.d speed is slower than on either of the other two legs-- a.ssuming, of/ .
course, that the wind remains constant in both speed and direction. .But, .
if the least- roa.d speed is represented by the length of the longest sidg,.

- the grea.ter road speeds would need be represented by sides longer tha.n the s
- longest. 'Agreed? ST . Sy

8o, to ms.ke the dafa fully vi51ble ) sta.rting from some point P, we

. draw lines. PL, IM, PN,  to represent V V., respectively, three: vectozs

(in Pig. 38) which a.gree with the three arrows im Fig. 35 in magnitude ‘as-

‘well as,th direction, especially FPL || AB, P || BC, PN || CA.

., . 4 . ',";L. : .
C. /“ . . : - ‘ 4 ~\
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How are we to utilize this vector dia.gram to determine ayd “the maxinﬂnn
-Tair speed of the plane? Can we introduce a vector for a.? Alas, no. That
the plane flies a.round the flight tria.ngle at full throttle merely implies
that its air speed a., the magnitude ‘of . a., is constant. It does not
imply that the direction of a is consta.nt We must think agam. . oogm
- Can we introduce & vector W- for the wind? Doesn't this suggestion seem A
more fruitful? Remember our a.ssumption ths.t the wind Velocity remains con- T >
sta.nt throughout the entire fligh't:, 50, tha.t one directed line segment ﬁ’om
’ P should serve as a vector component of the roa.d ve:Locity a.long each a.nd all -
ot the three legs of the flight tria.ngle. As iIn Fig. 37, let PO be a
directed line segment representing Ve " But wait a' moment, Wy, a.lthough con-
I sta.nt, s unknown. Aré we ba.ffled? Think a moment Do We-, 1n a.;Lgebra.,,
d;lay embodying an unknown, x, ‘in equations until we have’ determined i.ts
value? No, to the contrary, we put in x 1in order to determine Ats value. t
. 8o?. Tentatively, ve insert 0. See Fig. 39.. ‘

-
4

va



: ‘ .Fi' 39, , y e

Whait noy? Reference to F:Lg..36 suggests combletion of .the para.llelogra.m
of Fig. 39 of which PO is a side and L a diagona.l However, in Fig. 36

Lo ‘OL. is parallel and' equal to PO' an equivalent directed line segment 80 . .
il . tha.t & could a.ltematively be represented by OL and, «the vector para]lelo-
gra.m dispensed with in’ fe.vor of the vector triangle POL. Thus 3 in Fig- 39, _

A w!ﬁ ‘be ‘an -a.ir-speed vector which together with w has ‘the’ reéultant Y o

+V; « "Bnd what of triengles POM, PON? We have remarked that ~ TG *should
e serve as a component oF «the road velo7ity a.long each.leg of the flight
triangle. - ‘See Fig.. 40. . FEPR T ,
. o - . ‘ f .\ '
t Ak ’ "
' L 4 <
X y .
L »” .
t :‘ 2 -
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Figure b0 -~ . o

Note -how deligHtfiJlly the three vector triangles."interloelz" on PO Just i
. 1g.ke pieces of & ,jigsaw puzzle. Not only is _Vl the resultant of 7 .
and an air-speed:_yelocity QL also is \l2 the resultant of w -and an air-
speed velocity T)_M, and '17'3 the res!ultant of ' w and an air-speed velacity -
ON. Blrb the plane flew the entire flight at. ﬁJll throttle. . Therefore - its
air speed a (but not its air Veldcity) vas the same for~each leg. ,Therefore.
f'OL, oM, . ON have the same magnitude (but > /10t same direction) Therefore ,
0 is equidistant from. L, M, N; it must ‘be. the cénter of the circumscribing .
‘eircle of triangle I.MN Construction of 0 determines both a and ’ w. o

This is Von Mises!' elegant ingenious- solution. R o

. N . [ - . S
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Cha.pter 3 . ', - From the History of Dynamics

Whereas statics, we recall is that part of mechanics which is concerned
vith- the equilibrium of bodies, dynamics is that part which 1 concerned with
" 'the*motion of bodies. ' The former, as we have had occasion to’note, goes back -
‘ to the Greeks; to Archimedes' discovery of the Lew of the Iever and his appli-_._l'
c,ation of it to the -integral calculus. The latter is relatively nev; H it starts
. With Gelileo. oL ! d
- Section 1. Gelileo - . .
. Galileo is known by his first’ name, his family name is Galilei. He .was
.born 1€ 1564 and died in 1642, To: believers in the transmigration of souls

 the date of his ‘death is important Not only did he die in the year in which

.VNewton was born, - co eniently for their speculations y. he died shortly before
.Newton was born. znuch more important date is 1636 the year in which he

_ completed the book on which his fame so securely rests, the Dialogue Ooncern- _

~ ing Two _Ne_w_ Sciences. Although many of his brilliant predecessors, beginrr.tn‘g’
with Aristotle, and including that most versatile of versatile geniuses )
Leonardo da Vinci .had been interested.in the free fall of heavy bodies,
Galileo was: incomparabl}r the greatest dynamicist of them all. }Ie inherited a
- dogma and bequeathed a science. '

~

His tomb is to be found in Florence, in the Church of Santa erce, among
" those of Leonardo and Michaelangelo the . Dante the poet and
_ﬂachiavelli the_ pol‘itician._ His instruments are also to be found in Florence, :
*in the Museum of the History of Science, among them the telescopes he made,
used,’ but did not invent, and the thermometers he made, used, 'and did indeed’
_°invent,.also his instruments for the study of dynamics. Florence is an inter-
esting city. y
Like his father, who was a physician, Galileo studfed medicine. Unlike
his’ father, he .was soon bored by it.\ In those days the college course was &
digesting, and the examination a regurgitation, of the texts of Galen. Galen
had lived from about 130-200 AWD. Meanvhile, his texts -- presumably ‘in Latin,
" for then as now few knew Greek -~ had been accumulating the dust of dogma for ‘
fourteen. centuries. In medicine it was sufficient to gquote Galen, as to quote i
" Aristotle in. practically everything else. For Galileo, to.quote was not suffi-!l
cient.~ he turned to mathematics. . : o . ‘ ;’
" 3.1.1 Heavier Bodies Fall Faster? : ' R j
" Aristotle had stressed. the -importance of observation, yet he did not, in |

dynamics, observe well himself. It i6 a matter of casual observation, well
" known to mountaineers and pthers, that bodies free to fall,. fall to the ground.-
.To Aristotles' very casual observation,.the(heavier the body the faster the /
. . : _ , f
\ , . - .
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' ¢ fall, Gs.lileo argues to the contrary. L o S ~
. Suppose two bodies W, A4 to fall freely from rest and to have velocities
v, v, respectively, at the end of unit time. Then, according to Aristotle,
' given that W is greater than w, V must be greater than. vs But asks °
Galileo, "What. happgns if the two bodies ate. conjoined?|! Let V be the velo-
, city at the end ,of u.nit time of the con,joint body W . Since W alone

falls more slowly than W, the w pa.rt of W+ w must retart the W part

the fleet of foot has to slow dovm to help the lﬁene along,{ V must be less
than V., . Yet, since W +w is greatex than‘ W, by Aristotles' hypothesis,
_ v 'must be greater than V. Therefore A is both less than and greater than
V; W+ w falls both slower tha.n and faster than W. This is absurd.
What has Galileo done? He has said in effect that her,e is a possible
-law, - supported by a rather weak observation. Is it consistent? He has argued
that it is not Therefore it is unacceptable to mathematics; it cannotbe‘ an
] ingredient of a systematic description of phenomena. : X
. Galileo's argument vas an important one; it made uneasy the. dogmatic'
slumbers of many of his contemporaries. He spoke and wrote with an edge to.
tongue -and pen. Like his father, he was quarrelsome as well as argumentative, _
and witty as well as logical -~ a combination that made his opponents look silly
as well as their arguments. unsound. He d;Ld not’ endear himself to all. S
' 3.1.2 ot "Why?", But "How?" | .
Why? Why this? Why that? Such are the questions asked by the good
“shepherd Aristotle and bleated by his sheep down through the centuries. Why

do heavy bodies fall’ "Because, says Aristotle, 'each body seeks its natural
place.' He argues as if an inan;pnte object were an animal seeking its mmte.
Are -you much enlightened by this argument? No, because you are born in modern
~-<times, Galileo 'was ‘not. He had to argue the point; such was the intellectual
élimate of his day. - Galileo, frighteningly modern, asked a better question,
., "notﬂhWhy?" but "How?". His question was a demand for precise’ description of
‘-the phenomenon under consideration, not speculative anthropomorphism. 'How,
he asked, "do bodies Fall. freely?" His "How?" was much more._ Behind his ques-
« tion stood his fundamental tenet, "The greatest book is Nature; it is always
open before -your eyes. And the true philosophy is written in it, but to read
it, you must know the characters in which 1it_is written.v It is written in
mathemstical’ language, and the characters are triangles,. circles and other
geometric figures.' His demand was for a precise mathematical law, no less,
3.1, 3 'How To Heavy Fodies Fall? _ 3 S :
‘Galileo asked the right kind of question. Finally he asked the right\gues-

tion of the right kind.” He gave. the right ansver.. In 8o doimg, he. fo_unded a
. k] B . N . '

~
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new science.

[ ’ .

(b' How do heavy bodiss fall? The quther, the faster. Even the most casual -

server cannot avoid the conclusion ‘that the velocity increases with the dis—"
_tance fallen. We all know that the greater the qrop,of a hammer, the hard r it
hits., We all know that it is better to be’ hit on the head by the bone foi the
- dog. dropped from the second story window than from the top of the Empire tate
Building.' It can be made painfully evident that free fall motion is acce er-
ated So what is the mathematical 1law relating the velocity to the distan e? {
What is the simplest conjecture? That "the velocity of the falling body isi° o )
directly proportional to the distance fallen? This was Galileo s first ques- o .
tion.' It is the right sort of question.. —— : & - :' "'1 -

- It is likely .that Leonardo and a few others before gglileo had raised the

same question, the difference is that Galileo took it more seriously.’lAlthough

AN

not té. be found in hig printed worRS, .he discussed 1t at length in his corre-. _—

' sandence with other natural philosophers.» After some three years of pondering 'Fy

‘he came to the conclusion that‘;his conjecture is absolutely untenable, it has’

the self- contrmdictory consequence that ‘the free fall could never get started. s
His refutation is not an easy argument and cannot be stated concisely or very .
clearly without calculus. For this reason its consideration must be postponed -
until you are- introduced to differential eguations, nearly at the end of,this _:Q o
course of lectures. The probability is that Galileo had thought it out thor- o
oughly, “but could not quite succeed in putting it explicitly despite his mathe- o

matical ability. He had it clear enough in his own mind to convince himself /'

. yet could not state it:well enough to convince those who, uniike himself,

lacked the grasp of’ the difficulty given by three years of : pondering. Mach
for example, although & first rate physicist, *failed’ to understand him, =~ bl
LJSo Galileo N conjecture, based on the undeniable fact oq_free fall that

the farther the fall the faster the fall, is untepable. The fall could never

) get-started.A He-had to think again. But, it is also an unavoidable observa--

longer to hit you the harder when

tion that the longer the*time,'th faster the fall.. The boene for the ‘dog takes‘ -
Qdropped from the top of the Empire State R

Buildihg instead of being tossed from a second-floor window. yree-fall is - -
accelerated with respect to time ‘as well as with respect to distance. So what .
is the-mathematical law relating velocity to- time? What is the simplest con- o s
Jecture? That the eibcity of the falling body ' is directly proportional to
‘the time? . That is Galileo s second - question.. It turned oqt to be the right
question of the right kind. ~ . ' ’ .

i How daid Galideo verify his. conJecture experimentally? Remember he did‘not

_have tqday 8 elaborate photoelectric equipment ‘with which to handle- split-

' second motion. “Stop a moving particle to take a longer look and you. have o

S . A . Lo . -
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destroyed the velocity you wished to observe. Yet there is no - hurry in .
measuring distance; this can be made at leisure ‘and -with accuracy. So Galileo 8

”.-problem was to deduce the law relating distance to time implied by (and imply-
.:_gg) velocigy being directly proportional to time, and hence indirectly to'
gfverify the. latter relation by direct verification of the former.

. So to fUlly un_erstand Galileo 8 indirect experimental verificatiQn of

',i his conjeqgture, we must first ask how he deduced that relation between distance

: ‘and time which is’ implied by his conjecture  To facilitate deduction, 1ike
" ?alileo but unlike Aristotle, we shall use diagrams with coordinate axes;

essential charaeters of mathematical languagel as Galileo would put. it.

%alileo 8 investigation of dynamics was physical, Aristotles .was metaphysical._
t, unlike: Galileo, we have: the additional con enience of algebraic . notation.

ad it been invented in his day he ‘would . certainly have known 1t; almost cer-

tainly he would - have been able to push his devel lent of dynamics® much farther.-

. Suppose that a heavy body has a velocity v when it-has been falling

'ﬂ freely for time . t. Then Galileo's hypothesis is that v 1is directly propor-

/ .

- tional to 6 that v 1s.a constant multiple of t; that .

L e v = constant X t . . ;_ .
‘The, numerical value of the. constant depends upon the units e use for v and
t,' and the constant is nowadays usually denoted by g. Our primary school

* teacher who taught us that A is for apple, should have added that g is
‘for gravity that made the -apple in Newton 8 orchard fall. Thus, algebraically

speaking, Galileo s conjecture is "i'- . “

2

L - \ L v=gats ' (l) \
' But the distance ”s’ fallen from rest in time t by the heavy ‘body depends
upon t, 's is. a.specific, yet unspecified, function of t,
SR ‘ £(8) . (e)
|'Galileo 8 problem is: Given (1), to specify (2) s
: How did he solve it? . Most ingeniously, by czéceiving accelerated, non- -
f; un". motion as - limiting -case of non-accelera ed, uniform motions.. .
' .r;rst, consider uniform motion._ If you drive for two hours at a steady
rate of 40 m.p. h., ‘you go a total distance of 80 miles
b " 80'= 10X 2.

More generally,

distance = uniform velocity X time .

Ngebraically, =~ = ..~ - T
’ L ' . s =vX4t EECI R
';where v 18 constant. - - '"':, e .
.Graphically, see Fig. 1. S :

i .
4 o ”
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'.vv ke Fi‘%‘ure 1
'I'he ordina,,te v 1is constant \so that the graph of v is a straight.line
_pa.rallel to the t-a.xis._ Note \that the area under the curve, i.e., the area

.of the shaded rectangle, is V\X t Bo, by (3) , the total distance traveled

is represented by the area under the curve-- when the motion is untform. Oh

" yes, an obvious observation, but nevertheless important. ' = - P
Second, consider the non-uniform motion. What is the graph of (l)?

* This equation is of the fory y = mx, 'with v 1instead of Yy, 4 instead

" of x, and g instead of m, ‘It is a straight line through the origin with
'slope g. See- Fig. 2.

L

SR | }v4 o C )

- Flgure 2 - S

. »

Why is the' welocity of a freely falling body not uniform? Because its

velocity continually- increases,‘ bf course. And an'accelerating-car does not, -

for exmnple, move at 0 ftf/sec for the first. second, at 5 ft/sec for the second
. second, at 10 ft/sec for the third second, at 15 ft/sec for the fourth second,
and so on. To- the contrary, let us temporaruy suppose velocity which con-
tinually increases at a steady rate to be characterized by such spasms of

' uniform motion punctuated by accelerating Jerks. at the end.of regular inter-.

- vals. ‘I'his gmtesque caricature of the truth is illustrated by Fig. 3.

- | 1ip
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C intervals, the ten velocities, 0, 25, 5, T

'_continually increasing velocity as we please.

Figure 3
/

In the Plrst second the car moves Zero feet then instantaneously with a

bone-shattering Jjerk it accelerates to 5 ft/sec. After & second of gentle
‘driving at this constant velocity there is a we-had-better-install-safety-
belts jerk to 10 ft/sec. There follows & second's driving at“lO ft/sec, Jerk;

. a second's driving &t 15 ft/sec, Jerk; a second's driving at 20 ft/sec, and so

on.‘ The distances covered in the successive intervals are represented by the
.areas of the successive rectangles., (The first rectangle is of zero height )
-The total distence traveled is represented by the total area of the shaded
: rectangles. S ' .
- Now suppose th accelerations and the time intervals to be halved In-

.the first five secénds the car now acquires successively, fer half-second ,
%, 10, ..., 20, 22l ft/sec. _IllusJ '
trate this for: yourself by a diagram of the same type as Fig. 3. The Jerks,
although twice as frequent are only half as strenucus, for the- sudden in-

".creases in velocity are now only ft/sec instead of 5 ft/sec.

Now supposé these accelerations and time intervals to:be halved too.
. Although the Jerks are four times ‘as frequent as in the initial’ case, they are
only one-quarter as strenuous, the sudden increases in velocity are now only .
,.% ft/Sec instead of 5 ft/sec. With the Jerks eight times as frequent they are
) only one~ eighth as strenuous, the .sudden increases®in velocity are now only ‘

’ % ft/sec instead of 5 ft/sec.' When the intervals are ‘each ;% pf a second
. 2

where n is large, the . Jerks become gentle Jerks, for the sudden chenges in

"velocity have been decreased to :% ft/sec, The larger ve make n,_ the more
nearly we smboth out our ride. .By making n sufficiently'large we make the

smoothness of our ride differ imperceptibly from the glide of & car whose
-velocity is continually increasing at e steady'rate. By meking n- suffi-

' ‘ciently large, our grotesque caricature becomes as .exact a description of

.



Murtatis mutandis ‘these considerations of course apply equally well to’
.freely falling bodies. Ahd what happens to Fig. 3 .and the Tigure that you

havé drawn for yourself when n becomes 1arge? As the rectangles become more

‘numerous they wear a leaner look and more completely fill the area. under the
curve-of /v =g« %, By meking n sufficiently large. we come arbitrarily
" close to 'filling the whole area. See, Fig. L,

’ "

()

: ‘Aﬂ_’_“ N » . Fi-gure N

-
'

V{So? Why, of course,. the anea under the curve in Fig. 2 (i.e., the shaded area’
"f-in Fig. h (ii)) represents the total distance traveled in time t by a heavy
;body falling from rest. Despite the fact that the motion is non—uniform,

e

, _the total distance “traveled i6, 'as in the case of uniform motlon (111ustrated
l; by Fig. 1), nevertheless represented by the area under the cu&vé. But, the
-7ﬁ:area under the curve is a triangular area of base t and heighf"gt So,

Js=gxet
Fodlee, - i
12 ik :
: ) . / . *
- This .is the way in which Galileo deduced the specification of £(t). of

.'_ equation (2). ‘This is the law relating distance to time implied by velocity
“'being directly proportional to time. (And is it not evident that if thedd .
. area unider the curve is 2gt for all values of t, then the equation of
the curve .must be v = gt?) ‘The distance fallen is prOportional not as
' Galileo first thought to-the time, but to the square of the’ time. ~ In dis- N
: proving the former and deducing the 1atter, he, investigated two important .
':corners of. the calculus. ' '
- Galileo s basic difficulty, we recall, was that he could not "freeze" the
- motion of a falling‘body to take’a longer look,at its ‘instantaneous velocity,

easier to measure than velocities.

‘his guiding motive,- that distances are\
His final problem.was to verify (h) experimentally, thereby verifying
o . I ‘ .

i

O
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" indirectly its implication, (1), . Hoy did he do this?

* - Consider the following tabulation. N - '4?_ ' ' e
t ‘| Total distances fallen Distance fallen in
. : in %t seconds =-§gt2 " ‘successive -seconds
3 0 o L :
1v ) }‘gol ’ 2
: . 2 .E 1 ] .
: - - g
2 e Loy . B ‘
oy 28 s B 1 _
"\.r ‘ __‘:-:_ _8‘3
3 A 2 .lg + 9 5 e 2 L
2a°. -s - ' 1Y
SIS - -- - 58T
L . 1., K
) . 1 T vz et 3
5 58+

' The distances fallen in successive equal time intervals are infthe'ratio
1: 3 5:7:9 and so on. ' . R S
Thug if a heavy body dropped from the tog Of g wall passes a chalk
| mark 1 unit d8wn at the end of unit time, it|should pass a mark 3 units ' _
farther down at the end of two more’wits, &/ mark 5 units farther down at the
end of.5 units, and-so on. But bodies fall fso fast that even ‘these obser— g
" vations are difficult; despite a legend to lhe contrary Galileo did not drop _:
‘cannon balls from the Leaning Tower of Pisg. - Isn't it possible to slow up .
‘the motion to facilitate observation? Ar duction in the value of Eg
would not alter the ratios. A vertical wall is a 1imiting case of an in-
clined plane, shouldntt weé expect: these rJiios to hold for motion on an in-,
»” cline? Unlike a vertical an incline takés some of the weight of- the—body
sliding along its surface, thereby reducing the body's acceleration. ,Surely
the smaller the angle of inclination aﬂ?nthe slover the ‘motion, ‘

Galfleo experiménted to find out. -see Fig. 5.
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He found that a ball let Toll from O which moved from 0 to A’ in wnit
time moved from B to C,. and from C to. D, also in wnit time. As

-_' near as he could tell this phenomenon was independent of the angle of in-

.clination of the\.anline..- In this way Gelileo- substantiated his right answer
to the right ques"tion. S ) ' o S

T o .
. 3. l 1& Dyna.mics" of thé Inclined Plane . - . - : o . !

When the angle of inclination ‘a is reduced to zero, the plane is hori-

zonta.l and a body on_ it does rot move, the plane takes the whole of the
weight. The greater thé*-angle a, the faster the body slides down and the
mai:er the pmﬁortion of its weight taken by the plane. . Finally, when
90 the plane takes none of the’ weight we have free fa.ll. Obviously .
the pmportion of the weight taken by the plane depends on O as does the -
condition for equilibrium- offa body on it The condition for the. latter,

- which Galileo knew either frbm Stevinus or by figuring it out for himself,
- helped him to deduce the former.i His method is what really smounts to an .

implicit use of a parallelogram of forces..
First, what causes a ‘body to ‘accelerate? Yes, the force acting on.it.

) We all: know that ta speed .up when driving, to accelerate s e have "to ‘step

on the gas , as ve say. Our engine has to deliver more force. “And what is
the force which causes a freely falling body(to continually increase its _
velocity? Yes , the gravitational pull of the. Earth, its weight ' We now '_-
lmow what Galileo could not know, that the acceleration of the free fall of
a body to the Moon s surface is only about one-sixth that to the Earth'
surface. Although the substance of the body is unchanged in moving it from

" thet Moon to the Earth, its weight is increased about sixfold. "On the Moon
it weighs less because it isin .a weaker gravitational field.  There, ¥ith

only one-sixth the effort to surmount an ‘overhang, rock climbing must be a )
less strenuous affair. And when you slip ‘and-fall off you have only one- -sixth
the terrestial acceleration. The free'fall of a body -~ its acceleration -
is pmportional to the force acting on it =- its weight . ‘ .

Next, what is the g of equation (l)? Consider Fig. 2, the graph of ‘
this equation. What is m in ¥y = mx? Yes,. m 1is-the slope. More expli- '

- citly, m 1s the ratio of the change in vertical displacement to the change '

in -horizontel displackhent. So, mutatis mutandis, . g 1is the ratiq of the

‘increase in velocity o0 the increase in time.'_ But the curve is a straight

line, a curve of constant slope, 80 that the ratio g 1is the same no matter
how small .the change in time. In short, g is the constant rate of instan-

taneous change of velocity "due to gravity -- in a word the, acceleration.
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. %{ up: g of equation (l) is the gravitational (:onsta.nt the measure .
L R
of the Ed

'

4 's gravitational field. The force exerted on a body by “the’

) Earth's ) theddoon 8, or any other gravitationa.l field, is proportiona.l to the

consta.nt for: that field. : o ' -
: Accordingly,\let us -take g as a measure of the force acting verticallyu

" downward on a body'on an inclined pla.ne. ‘See Fig. 6.

\ . . \-

.

7 Figure‘ 6

-

Since the surface of the incline is supposed to be perfectly smooth the

only, effect of the. pla.ne on the body, the plane 8 reaction R ; nmst be .

perpendicular to” its surface.‘ But, recalling ‘the geometry of Number 2.2, l ;

. _(Yectors, Inclined Plane) the vector ‘g may be resolved into a force g cos O

perpendicular to the plane (and ‘so equal and opposite to R as there is no

o motion perpendicular to the incline) and a force g sin a down the incline. .

Thus, the problem of free motion down a smooth incline becomes s . in effect,
‘that of a body "falling" in a gravitational field of g sin o (instead of g)»

which acts in the’ direction' 04 (instead of verticaliy downwards ).

The gravitational field being g sin a instead of g, instead .of_

. V=gt "(1)
we have o . o | "
LA o ) ' * v =g eina- ‘t..." o .(1'-)'; ‘. 2
S T T U (O)
ds a cohseqnenee of (1), so that _‘ . 3
s=gsinar 32 () w
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3 " unchanged. - But, by.(l),

~

is\ a consequence of (1'). Taking t = 0 1, 2, 3, eee, it follows, as we
~an icipated, that displacements down the plane iﬁx’consecutive unit intervals

are ‘in the ratio 1:3:5: 7.0, . -, v
'I'his completes our exposition of Galileo s deduction of (ll» ) His treat-
ment was much less explicit e L
There is an alternative way of lgoking at the problem of free motion
down an incline. ’.L’he velocity v vertically downward of a body which has

>

.been falling freely for time t after beilng dropped from O may be con-
,ceived as the resultant of two mutually perpendicular compo)kent velocities 3 )

namely a velocity v cos O ’inclined at an angle o to the downward vertical
and & velocity v sin: Qo perpendicular to it.. See Fig. T.:

o

. Nowvconsider vhat happens when a smooth rigid plane, inclined to the _
horizontal at angle a , is interposed such that its apex is at O. Since'
the plane is rigid it prevents motion through its surface, 80 that the com-
ponent v coso. is annulled; but the plane being smooth its reaction must :
be perﬁendicular to its surfacesana therefore has no component up or down '
the incline: In short, although the component v cosa is destroyed by in-

terposing the inclined plane, the component v sin o 1in the direction OA is

so.. that i . | . . . o " \ o .-‘ 3
. e ‘velng=gsinag -t . :

i.e.,

free velocity down incline of :
, gsinag . t.

IR 3 X o




R . .
[N 1

‘ o ‘ . R
08 . s . g e o

v We: ha.ve derived (1 ) in an a.lternative way. ; o
' ' From the relation. (l) .between v and t for free fall Ge.li],eo deduced

a8 ‘wé have seen, the relation (k) between s and t. He went onl to ask.

wha.t is the rela.tion between v a.nd 8. The a.nswer to this question is the
elimination of t from (1) and (’-I-) Dividing (1) by g a.nd squa.ring, we
ha.ve, : _ . - . L . S
. X .vg —»ta : : )
P ¢ , o
g

substituting for t in (h),

’
4

86 that L o _ ,
. . ' S Vo=2gs. () - .
_ Neﬂ he asked the same- question for'free motion vn an inclined piége "
of . a.ngle a. Remembering that .(1°) 1s similar to (l(;i.‘nd (47) to (k) in '
that the la.tter pair a.re the former pair except for. the factor 8in a,
. what do you anticipate for motion down the incline? Do you not expect an
equation (5° ): vwhich has the*same similarity to.(5) asg (1') has to (1) and
(ll-') to ,(ll-)? Yes we con,jecture, L | A

1‘~ : A v QSina s.""(5'?)'

o

’ We ha.ve committed ourselves, we must test our con%ecture. '

Referring to Fig. 7 s We suppose a bodsr which sta.rts from. rest ‘at.. 0,
i.e., with v =.O,‘__ 8=0, and t =0, to reach A, -the bottom of the
'incline,‘ with velocity ,.V, a.i‘ter traveling the dista.nce S i’rom 0] tp A,
in time " T. By (1') ‘ ~

V=g sin q:\_’l‘

ana by (41)

[
i

A

1
=58 sin g - T.

a0 Dividing thefformer by g sina and équa‘.ring,

T e & sin‘iq S L
'_e.nd substituting for T° in the la.tter!' o o
: :\ ' L a1 - 2 i v2 P
: S .S =28 diga ' g2 sing'd. '~ 2g sina .- .

so that

28 sina s. '(5;.) “
17 -

v2
1
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" This, with .a.ppx_'o_pria.te change of nota.tion,_.is (512):% Our conjecture is con- *
» . N o

»dyna.mics. In Fig. 7, let OB, the vertic&l height of the commencement of

. : . . . -
firmed . . i .

(5 ) hes a vite.lly importa.nt consequence for the entire development of-

free motion above its tenni-nation, be I-I. Then, since O0A ='S, we have

a.nd‘introducihg mass 1, the substa.ncemﬁhose attraction by the'Es.rt_h's.

. - ’

\ -

sina,:-P-If . - i :"

v2'=‘2g-%-s

«

.o .~ S . V?—QgH.- (6) o e
Hasn't Ge.lileo 8 question a truly astonishing a.nswer? (6) makes no re-
ference to the length of the incline nor to its angle of inclina.tion. The

Substituting for sing 1in (5%),
L . T

80,

"gquare of the velocity~-and" consequently the- velocity itself --is indepen-'

dent of these things. The velocity. acquimd depends solely upon the height '
lqst from the commencement of the motion.. And since the 'a.cQuired velocity '

is independent of o, w& should expect the formula to hold‘even when' o = 90°\~ :
l.e., for free vertical fa.ll. And doesn't 1t? Is not (6) ‘the same 'equation

" as (5) but for difference. of nota.tion? -With the clarity of hindsight we .
‘now ‘gee ‘that (6), not (5 ), 1s the truly enligh‘tening a.nalogue. " The questions S,

' of remarkable men have rems.rka.ble answers: even Ga.lileo was astonished.

4

'3.1.5- Consemtion of Energy‘ B LA

, Fron (6),

I = e

2

~gravitational field i.e. ,‘ whose weight is ng, we ha.ve "

.

-mV2 -mg - H. 0 (7).

. And ‘wha.t is —mVE? Yes, the k{netic energy, the energy of the motion. And

" mg e H? ng . is the force exerted by gra.vity on the substa.nce m, 80 tha.t -

C mg . H is the work done aga.ins;t gravity in ra.ising mess m & height H.

- When so ra.ised a.lthough not in motion, m has ca.pa.city for motion, it . ' ‘i’
" has, as we say, potentia.l energy. u}gpn m 1is let fall, its stored energy 18" o
_utilized to produce motion; what was potential: becomes kinetic. The loss “

of the: former is the ga.in of the latter.  There is no overall loss, the total -
of used a.pd rea.dy-to-be-used energy remains uncha.nged the.energy is conserved.
Although Ge.lileo came close to’ formula.ting this: concept it nevertheless

. esca.ped him ~=-and his successors for more thap two centuries. "He fully appre- T
' cia.ted the implica.tions of (6), but not those of (7) ‘He d1d know that the ,

vo118 ,
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motion of (6) is reversible, that if a body in sliding dowm a perfEctlx
smooth plane from rest loses height " H in reaching. the bottom with velocity’
V, it will when proJected from the bottom with velocity Vo Just reach the
top oquincline of height "H. This he demonstrated by letting a body

. . slidq ddwh one incline and up another of the same height. See Fig. 8.

L . - ' Figure 8‘ ': ° L
1 i o " - e . L . : . P -7
To ‘prevent’ the sliding body when on one incline at A from jamming
against the edge of the other, it is of course neceésa

to round off the
o vcorner at’ A. Actual- conditions being less than ideal, dhere being some

- ‘ﬂriction despite smoothed and polished inclines, the parti le from 0 does
not qgéite ‘'succeed in reaching 0' " Were it suctessful it wolld return to
éjéd from 0 to- O again -- and again, Perpetual motion is an idealiza-

v

tion’ not a reality. A fact that reminds us that absence of friction is ’
e sential to conservation of energy. With friction, some potential energy is
. changed not into kinetic energy, but into heat = : C

. Too eliminate friction Galileo made® an experiment Justly regarded as a

classic. - What is needed--apart from the genius to conceive it?": Two nails,

-~ - string, a heavy bob, and a lighted candle. Se&~Eig. 9
, el .

O
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Why the’ candle? To burn through the auxiliary string, thereby releasing the
.'pendulum from rest. Although ever 80 careful in releasing by hand oné might
inadvertently pull back or push forward the obJect is to let the bob start
~of its own accordg What happens? The bob swings down - from, 0 to L. and o

"then back up{--almost--to the same level at 0'. Almost but not quite ‘
: to the same level, because there is just a little friction between the not i
. perfectly flexible string and supporting nail .and frictién of air resistance ; ‘
to motion of both string and bab. Inrthus avoiding theqrelatively gross t o
"-friction of -a pair of inclined planes, Galileo's experiment close}y approxi- '
mates the ideal B . g
‘Did you anticipate the result’ Oh yes, I know you'are te':?uslv famil-;
‘iar with the swinging of a pendulum. The point is: - did youvanticipate )
'this result as & consequence of the inclined plane result (&liustrated d?
"Fig. 8)? Or did you from the all-too-familiar swing of the pendulum infer
. the result for (idealized) incline planes? It takes genius to see the com-

A

Lmonplace with discerning eyes. : . -‘\\
What did Galileo see? At any point of its circular arc the bob-is moving,

momentarily, tangentially to the circle at P. It is, it effect, moving -
Just for' a momentxu-along a very‘short segment of an inclined plane whose
slops is that of the tangent at P.. For other moments the bob is moving o
along other inclines, other- inclines with other angles of inclination. But,
precisely because the motion is independent of the angle of inclination it
matters not whether the bob traverses two or two’ hundred planes., Isn't the

.. circular path a: limiting case where the motion takes place along infinitely

' many planes? Fig. 10/ is suggestive. Think about it.




Have you ever discerned the swinging of a pendulum as motion along infinitely
‘. many inclined planesﬂ More important would you have seen its implications?
Vary the data. Galileo: did_ To repeat his additional series of experi-

< ments we need additional apparatus; we need another nail. See- Fig. 11.

Ca

Figure 11
~ . . o

>

A\ The extra nail N is fixed vertically below that suspending the bob
. What happe s? When the bob reaches the lowest point L 1its suspending
string gets caught dgainst N so that the subsequent motion of the bob is ;

‘i : ',along a circular arc of radius N L about N instead of NOL ‘about No
But its motion at L is simultaneously tangential to both circlés since here
they have a common tangent, ‘80 that there is no disruption of the continuity
.of its_motion. There being no disruption, there is. no loss of velocity.
There being no loss of’ velocity we expect the bob to ascent to almost its
‘original level. (Remember air resistance and the imperfect flexibility of
..the,string,)- Iﬁ does. Additional confirnation is reassuring. See Fig. 12,

L8
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' l o Figure 12 . ‘ | ’ . /\

- \

Continue to vafy the data. Vary the helght of N, sbove L. What hap-

. arn ‘ - €
pens when N “is mid.way'between I and H?' The bob Just about reaches

4 It he.s, in effect ’ climbed planes of a.ll angles between 0° and 180°
And if ‘Nl is nearer to L tha.n H?  See Fig. 3. . .. . ';.




f o

kS

" physics.

et . .
° . . . .

-

The physical constraint of the string prevent\he bob from going any higher. “
‘ thsn H;L"‘ where HlN = N L. ~ The bob is carried beyond H and the string \
begins to wind around the nail N thereby demonstrating that the bob has
* a residual velocity at - Hl’ that it would have gone higher but for the
constrairrt ' . .
Here is verification, elegant in ité simplicity, that a falling body ac-
quires sufficient velocity to return to its ori-ginal height Do.not be i
deterred from ma.king these experiments for want of a nail for want of a nail.
{}a kingdom was lost. The whole apparatus can be pu.rchased for a quarter of

S dollar or half a crown, ~Yet remember it was the man behind the experimept

‘'who made what could be an idiot's play-t,hing one of the great experiments of

[

316 LawofInertia'I\'

What more is there to say? That depends upon whether you think about
‘these exPeriments with Galileo 8 intelligence. We reconsider the situation
: illustrated by Fig. 8. We know that with idealized planes a body let slide

’ ,at 0 would regain its original height no matter what the inclination of '. .

AQ!' to the horizontal " Now suppose . "AO!'" to be nearly horizontal. . What
happens? The slope is so gentle that in regaining its height the body has
-to travel miles and ‘miles up the incline. The more nearly the incline 1s to
dead level the farther along it the body will: slide to regain its original

height. If the incline is precisely horizontal the body will have to travel'

-84
. continue at constarrt velocity. A
1t go- to regain the height of -

’ must go on, and on,, forever, andﬁer.

" on, and on, and on. ) . ,
What about its velocity? Wé all know, willy-nilly, without experiment,,
* that the Bteeper the ineline, the greater the deceleration of- 'bhe body '
‘ascending it; the gentler the incline, the more, slowly a body ascending it .
_ will lose speed. If AO' is .onl‘y Just uphill the dropping off of speed o
'must be’ a very gradual affair, yet .if Aot were downhill ever so slightly :
there would be an increase of speed. _‘So .what Happens: 1f AO' 1s dead level?
: There .can. be, nei‘ther a slowing d nor a spee.ding up. .So0? The body must -
’ % '..’:ow far along the h%'izontal incline mst .
VIt has to go on, and on, and on. Sp7 It

,»' ’ N . Coa

) Galileo‘s theory being consistent with ou.r connnon experience, we antici- :
'pate that these conclusions may be drawn from. his theoretical equations as

:_'_well 88 from his experiments. . In deriving (5 ) in Number 3 l 5, we obtained‘ '

' the equation' . PR . -

_n
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i €.y & body ‘with. velocity v at the foot of a plane of inclination (o} will
under idealized conditions, reach the top in time T, where

Con'sequentl.y, since 'sina. tends to 0 as o tends to zero, T becomes in-
finitely large when the incline becomes horizontal.. Also, we recall that

the body in’ question is, in effecb falling freely in a gravitational field
g sin a, i.e., with an acceleration & -8in Q.- When a= O sin g =0, so0 _. .
that g8 a 0,+ 1.e., there is no change of velocity. o 4

4 What from all these experimental and theoretical considerations do you .
conclude? Ga’Lileo s conclusion is- the Law of Inertia. A body will continue -
‘in its state of rest or of uniform motion in a straight line until acted -
upon by external forces (e.gy, gravity, friction) to. change’ that state.

. The astute reader ,may protest that we have tacitly used the Law of Inertia
in deducing it. Such protest misunderstands the situation. Galileo vas not
ms.king deductions from éstablished theory, he was establishing a theory., -
‘Tacit uase is a step towards explicit uSe, inarticulate experience a step
towards articulated- experience.o And the steps? Varying the data in accor-
dance with ‘the concepts of a fertile imagination. o , o

But why is this law described as Lav of Inertia? An inanim.ate body; wn-
like & person or an animal does nothing to control its. 0wn motion. Whither -

i_t goes and how it g0es4 are at the mercy of external forces. It is ’inert.

Galileo invariably considered the Law of Inertia within the context of
his discovery; e always thought of uniform motion along a ‘straight line in.

' an infinite plane. Never could he escape the terrestial his thoughts were
Earth-bound. Of course he knew -that the Earth is spherical, yet’ ‘he never

b'

.thought out the consequences. -He knew what little in his ‘time there was to

know about the stars, he was one.of the- first to use a telescope, <but he 4
never came to the idea of applying his Law of Inertia to the stars. A simple'.,
idea, yet a. tremendous Jump forward, It is as if Ge.lileo became &° victim of "
hisc own law, bound by the inertia of & fixed contéxt. Tt is remarkable .
Galileo .did not make the ,jump H it would have been more . remarkable had he done
so., Galileo was- Ge.lileo, nat’ Newton. ) R - ) ; R

3 1.7 A Cam/mn Ball's Trajectory

It was in Gelileo's time’ that firearms were invented, cannon became’ the
final argument of. kings. A'.'I.though ‘a dead.'l.y sub,ject “the efficacy of new -
methods of killing for one s country is always a lively issue. What is the
pa.th of a cannon ball?’ The question was of great scientific interest as:well
-as of practical- importance. Characteristically, Galileo was engrossed by. the_ §
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. problefn; characteristically, he solved it.. The outcome of his ingenuity we
know today as the method of superposition . . 3 - '
.~ - Like Galileo, to reduce the complexity to the manageable, we neglect
the dimensions of the cannon ball and consider it to be merely a material.
point. To further simplify we neglect friction although air-resistance to." )
& cannon ball is by no means negligible., Galileo did not'have the means for
. precise measurement,éand remember that a first approximation is-a-step to- '

. wards a better approximation.§ Uhlike Galileo, we are able to facilitate his‘,

solution by using a 1ittle algebra and an orthogonal coordinate system., It
- is vital to his solution thet the one axis is horizontal .ard the other verti-.
cal. - ‘ - ' -

S S
. .\' ‘ ? LY
| N 7777 AR
\ 1 { v ! : ’
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. | . .
| o .
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'.-Figure 14
[ . .
The initial velocity of the cannon ball when leaving the cannon®s mouth . is v
represented in magnitude and direction by the big vector from O. This vec-
tor 1is resolved into a component u along the horlzontal x-axis and a com-'f
ponent v along the vertical y-axis. (Note that ‘the letter u’ comes before
"V as does -x-. before y, so that u is associated with x and; v with
.v: respect the alphabet) So, timing the ball's motion from the cannon g
mouth, at" x =0, 'y ='0, when t= O, " its horizontal velocity is u and
its verticalvvelocity V. What are its component velocities in these direc-
tions at time 2 _ . - .
Galileo's deep insight is that the horizontal motion is unchanged. The
 horizontal .component of the ensuing motion is that of & particle traveling
.in a gravitationless field.. Remember his Law of Inertiat' This component
remains u. . So, at end of time t, the horizontal displacement X is:given
R4 ;f o B B X = ut. - (8)



And what about the vertical component of the motion? Likewise, 1f. there
: weze no gravitational pull vertically downwards we would have ’
‘ y=vt. e { : : ‘

But this is” contrary to fact B so let us be mindﬁﬂ. by writing the letter Yy
' with a superscript, viz.} ‘ ‘ '

. y' = vt . : (9 ) )
Next taking gra.vitation into account and ignoring the initial velocity, o
from(h)wehave _ : . S R '
¥= —st

: PR ‘ N _
'where.the positive y-axis is vertically downwards So, with positive axis - .
vertically upvards,’ | S R

| ‘y'=,%gt2f _ L

: Yet to be mindi‘ul of our neglect of the initial velocit'y v, we write the .

' letter y with a double superscript, viz. _ o

/ "= epeett. (9")

It is at this stage that Galileo makes use of the principle of s.uperposi-
tion. .He argues that ‘the total upward displacement y (in time- . t) of a "
particle,leaving 0 with initial velocity v and decelerated by gravity ‘

'will. ‘be the sum of the displacements y' .and ¥, l.es, of the displacement
(in time t) with initial velocity v but no gravitational field énd the dis-
placement (in time t) with- gravitational field but, no initial velocity _

: What is his argument? First, suppose the displacements to take place consec-
utively, in’ time. t the particle is displaced y! 3 subsequently in a simi-
lar time the particle is displaced a farther distance y . Clearly, the re-

' sultant of the consecutive displacements is their sum, the Joining ‘on’or add-
ing in position of the: latter to the former. In short, superposition is :
obviously applicable to the displacements resulting from the ‘successive mo-~ - L
tions. The cru.x, of the matter: .Is superposition applicable to the resultant ,

" displacements. 1f the motions' occur simultaneously? Whether or not a particle.,_
" has an initial Velocity -is independent of the. presence or. absence of a gra- .
vitational field, and a gravitational field is independent of whether or not
a. particie has an initial velocity. So- surely both motions may occur simul -

‘_ taneously without either altering the other, 80 that the displacements due

to ﬁese motions are unchanged by the simultaneity ‘of the motions. Super-‘

position is still applicable, from (9') and (9") we have = . ‘

' _ y =vt- —gt - (9)
. We can describe completely the cannon bal_l ] Jectory if we can ,
always answer the question: Where 1s the cannon ball now, t 'seconds‘ after
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- being fired? The pair of equations (8), (9) give precisely this answer; from-

~n
- (8) we get its present horizontal displacement x,” from (9) its present
vertical d.isplacement y; 1i,e., we get its present position {x,y). ’l‘old
when, we can compute where. = For any when. (t) we can plot the where (x,y)
and so. obtain a picture of the’ ¢annon ball's path.
' .
: If we know 4he cannon ball's present horizontal displacement X, by ( 8)
we c%ind when it was fired and so by (9) find its present vertical dis-
. placement ; ; given X wercan compute the corresponding ¥y’ via the go-between_ ]
Ct. Ma.thema.tically' spea.king, t 1is said to: be a para.meter, x and y. are -
said to be given para.metrically. Somewhat analogously, if X 1is-the father
of T and Y- is the only son of T, he parameter, the middleman
: between Y and X. EI].imjnating reference to . the middleman, we"ha've.
» that Y is a grandson of X. It wpuld be convenient to have 'y deal
A direct'ly with x. Can ve' get rid of the middieman +t? -
" From (B) o . _ L : s .
. ¢ . ' . ) B ) . t = E . . . ' : .
; I - u ; !
8o that 2
. {-,2 2
=5 .
. 0.’ . . . u .
Substituting for t - and 2+ in (9) 5 :
. . - g . y v . E _ ;L_g. x_ . (10)'
a2 2
: u
e What sort of. curve ‘is given by (10)? Can we transforn this equation into
a more familiar pattem where grapheis }mown? To make +1 the coefficient
of x2 ve multiply' through by . -?-g-, giving , _ r
\ R -_?-Ly—-ér—vx+x2-
N . : ' : .8 - -8 .
2 2 : . ) : %

‘ .Adding -T, vthe square of ha.lf the coefficierit of X, to each side

22 2 2é T _ B
u'v 2u uv 2uv 2 v :
.T__g_.y =T-__g_.x+x

. . g g .
" i.e.s the square completed, '

.-

vhere -t
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- " - .. zg and x . -_A'g‘.’- o

.t

'i.e., ‘a para'boia with vertex X=0,-Y= 0, and axis ’,X‘_’= 0.‘_.When X - 0,

2 o : .
x=u- %,' and when Y20, y= 2 Y. g0 that (10) is the equation of &

i : ) R
g

’ v . L
parabola with vertex (%’, %2) and axis x=u- .
At first sight the coordinates of the' vertex seem uneni,ightening. What

is thelr physical significance? Think back. By equation (5) we know that
- a parti_cle projected vertica.lly with velocity v will ‘;}ust reach a height

of 2—8-, the vertex is at the maximum height -of the traJectory. But a para-

‘bola is symmetrical with respect to its axis, so? Why, we must _expect EgY-

“to be ha.lf the cannon's range. Is it? en the cannon ball returns to the
’horizontal plane y = o, ‘1.e., in (10) I '

Xy g )
o=3(r-8 u)~

but the‘ball-_ having left ‘the cannon's mouth. x # 0, ' therefore

. 'm S . . g X - ) .
.0:'=_V-§";E - ' . .
: ' o 2uv i RS AR S
] x-—‘fg—v- . o . ..

AN

. Thus % 1s . indeed half the cannon s range. We are' no# able to:complete‘ P

‘Fig. 1k It becomes Fig. 15,,

v 4

Y ‘ s ‘
- N o o
~ vy 1ot __: _______ }X
oy o S 2|
- N o
:- l . .
o '.’ ' L3
, 1 3
Y — Y >
. ..le——‘:.g = g ﬁ‘ . \
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How dia Galileo verify expsrimen'tally 'bha.'t the cannon ball's 'brajectory

is a parabola? Have you not seen performing dogs, and even seals, jump
' Jthrough hoops’{ Success is assured by placing the hoop where the jumper is -

o going 'to /,jump "Galileo used this principle. See Fig. 16, - - ‘r.-

¢

. - | Figure 16
N - , " . N . .- .. . \

The inclined plane is a .device to give the ball a predetermined w'reloci'by
"u ‘along "bhe'herizqntal A'0', .:so that it hurtles horizonta.lly into space -
' a.s if at O' i'n'Fig.‘ 15:. 1Its nea'b _passage through -a series of hoops whose

cen'ters are on a parabolic ‘arc confirms his theory.

Yes, ‘a li't'tle na.ive by dern standards s but who with the technology' of.
Galileo‘s day ‘and age odid dev:Lse a’ be‘t‘ter? ‘Speaking of ingemli'ty, refer

back 'to Fig. 5. I never to1d ‘yQu how Galileo measured time; watches were -

noneiisteh'b. He glued tiny ‘slats across the incline at A B c, D big

" enough for 'bhe sliding body to be audible when hi'tting them, yet not su:ffi-.

" cient an obstacle. to impede the motion appreciably. His ear his metronom -
' 1ike his father he was a good mus:Lc:Lan -~ he judged the in'bervs.ls equal. All
hysicis'bs use their heads the .bes'b also think with their fingers.

Section 2. Newton

Inevitably, Galileo leads 'to Newton.- Newton was bom on Christmas Day,

1642, some eleven months after the death of Gelileo; ;:a fact the transmigra-

tionists among my readers ‘cannot iaél to remember. Never has San'ta Claus-
: o : . 0
J
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\:/:h]t the world 4'more'e'nligntening Christmas ‘present‘ Newton died in '

4 1727, yet the/impolant date for us is 1687 This is the year in which he - '
- was finally goaded by his staunch friend Halley into- publication of Prihcipia
Mathematica -» Halley paid forzthe printing. Never before or. since in the’
history of science has a man with 80 much to say been so reluctant to publish.
Leibnitz said that of all the mathematics that had ever been done, Newton
hgd done the greater part This rémark was made before they quarreled.

Newton 8 personality vas less color:t‘ul and his career less dramatic. thah
Galileo S, Unlike Galileo he was .shy and retiri.ng and hated controversy. »
It is: said that when asked to allow his name to be put forwdrd for election -
to the Royal Society, he at first declined on the grounds +that election would _
neCessarily ‘enlarge the circle of his atquai.ntances. “His life is his works.
His body, like ‘Galileo! s, lies in the Westminster Abbey of his ‘countr.y; his .
System of the World, his Law of Universal ‘Gravitation, his mechanics, have

become an :Lntegral part of educated common sense.. = | - - -~

3 2 1 Apples, Cannon Balls, and the Moon . . .
‘g is for gravity that made the apple in Newton s orghard fall. 'That
. this is an old story is certain, that it is a true story is not certain.
Certainly it is a good story
When Newton was a young man - :up at Cambridge there was a plague '1‘

escape it he. retired to- his parents' farm at Woolsthorpe .in Lincolnshire.

There in a year or 8o’ ot countryside peace he made his greatest discoveries

" the concepts ‘of universal gravitation ‘and the inf:Lnitesimal c.achﬂ.us. Whether :

or not he was hit. by a falling apple when meditating in the- Woolsthorpe or-

chard, he was certainly struck by a great idea. Although. Newton approached

the problem of gravitation with an open mingd, he- did not approach it with .

an emp‘ty mind: thousands of people have seen apples tall without being struck

by Newton's idea. : . .

%at aia: Newton have in mind when meditati.ng in his orchard? A diag,ram

in an appendix to Principia entitled "The System of’ the World" must make his

tra:Ln of thought an open secret,  He knew certain things about apples, cannon

balls, and the Moon R things that were common knowledge to the physicists of L;‘_
» his time. The Moon, like the apple, is- roughly spherical and’ presuma.bly

heavy, so why doesn't the Moon fall too? The apple is pulled to the Earth

'by' the ’Eamh‘s‘gravitational attraction. Why not the Moon? What ms.kes the

Moon orbit ‘aboyt the’Barth? Gelileo's Law of Inerz‘ia ‘implies that the Moon i
. ‘would continue with uniform speed in a straight line” were it not acted upon '

T by a force to change this motion, What pulls it from, its would-be straight -

line. path to move on a curve concave towards the’ Earth?

°

1

R R 139 ": B ‘,.f,

v
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-~ But howfon earthlcan one relate the path of a'falling apple to the ellip- :

“tic égrbit of the Mbon? Straight lines are 80 different from ellipses; apple
~paths so different from Moon paths _ Could two curves be more dissimilar?
. How qfuld both' possibly be exemplifications of one'law? =

SN

Newton saw the possibility, he had the insight of genius. His great idea? °
Cannon balls Yes, cannon balls Had not Galileo shown the trajectory-of .a
cannon ball to be a parabola? ‘Isn't a falling apple a. little ‘cannon ball
fired with negligible horizontal velocity? So, isn't 1ts trajectory~a limiting
case of parabolic motion? And the Moon? Isn t.this a large cannon’ ball?

o Isn t this a large cannon ball fired with great horizontal velocity?

Consider a cannon ball fired toward the ?acific from a mountain peak in

' the Andes. -Given a high muzzle velocity, isn't it conceivable that the ball

could be fired right out 1nto the Pacific? With a higher peak to fire from
and 8. greater. muzzle velocity to fire with, ‘wouldn't its trajectory be a

’larger parabola? Couldn't the ball be’ fired clear across the Pacific Ocean?
;But if its trajectory could reach halfway around the Earth ' why not three-

-.quarters? Imagination costs nothing, if three- quarters, why'not four-quarters?

- How exciting to see the cannon ball score a direct hit on the cannon from :

'which it was fired. For more excitement, more muzzle velocity - What now?

‘The cannon ball does not land on its cannon ‘after c1rcling the Earth, it blows -

:the gunner 8 head. off and keeps on going. An ending parabolic trajectory is . J

replaced by an unending closed curve, we . have a cannon ball moon in orbit.
Newton had the fertility of mind- to see the continuous transition from
apple to Moon. Surely this must be the most spectacular argument by analogy .

“in the history of science You will find a copy of Newton’ s Principia diagram

in my Mathematics and Plausible Reasoning, Vol. I, p. 2r..

If the Moon is kept in orbit by & force exerted by the Earth, are not
Earth and the other planets kept- in orbit about the Sun by a force exerted by .
the Sun? To let imagination run riot is one thing, to back up highly specula-
tive conjecture b}’ what finally becomes an overwhelming accumulation of
supporting considerations is entirely another matter Newton,had thewcapacity
of mind to do both.’ ' o -

3. 2 2 Never Smoke Without Fire

Apples and stones fall, the farther they fall, the faster they fall

© What causes them to speed.up? Supposedly & force exerted on them -by the Earth.

Yet a force is not something that can be seen. If it cannot be seen how can

“it be. measured? By its effett: smoke is evidence of the valley fire the
~ other side of the hill.. What is its effect? Acceleration, the increase -

e



-

in velocity it causes. e , _
From Galileo, for a body falling from rest, we have —
. . . v = g o t T LT : )

'If time - later the velocity has increased by B, then

[y

v +B g(t + -r)

:“.Subtracting the former from the latter s

B=g* 7

‘rwe.have_a I A o o o o A
. i.e’. ., a - V V' ' R PR * '

. increment. of velocity
g s Increment of time

' But if, for exa.mple, an increment in velocity of 6‘ ft/sec otcurs in -'3-seoonds

L2

Ky

. _this is at the same uniform rate as an incremen‘E of 2 ft/sec occuring in.1.
second ie., v R RN
.

, increment of velocity per unit time

-
i

. : acceleration. -
‘ We. know that Galileo und g tobea constant, ‘yet remembering the :
ifnecessary imperfection of mea rement we must be cautious. At or near the '
., ,Earth's surface g 1s a cons ant within the errors of measurement. Tt tums
. out that this answer is a very close, but oply a very close, approximation

. to the truth. . _

_ However, the crux of the matter is that acceleration is a measure oi‘

" foree. , What bearing has this on the motion, of the Earth and other planets .
around the Swn? What would be evidence that each is kept in orbit by a force
,exerted on it by the Sun? Its acceleration towards the Sun.

Al

."3 2. 3 THat the Planets doAccelerate Towards the Sun - ) »
Let us suppose that the Moon accelerates towards the center of the Eerth
and that ‘the pla.nets accelerate towards. the center of the Sun. What are

" the’ consequences of these suppositions? What sprt. of orbit will Moon and
._ planet have? ’I’his is a hard mathematical question because “the acceleration
takes place continually and 1is therefore difficult to 'take into account How
are we to deal with continual acceleration? Well“ how did Galileo deal with
continually increasing velocity? Look at Figs. 2, 3, and h again .and think ' ‘
: about them. ! : C . ' o
~ Yes, Newton as Galileo, and we as both Newton and Galileo, must deal with
the continual the continuous, “the gradually changing by starting with a
caricature, discontinual discontinuous, discrete Jerky Jumpy change and
"then by increasing the number and decreasing the Jerkiness of the Jumps

132
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e never”actually gets to'\F3).j See Fig. 17.

" point €% We.turn to Newton g answer.

’ ft/sec.. FUrthermore we suppose that during the. ensuing second it is not acted

\make‘the jerky change become less and less perceptibly different ‘from gradual

:change.‘ Thus fiction becomes reality. To treat the continuous as limiting .
'case of the discrete is really the. fundamental idea behind the integral calcu-fi
lus. Newton invented it precisely to facilitate this treatment. of cou:rse,"~
he inherited much from Archimedes, from Cavalieri and from Fermat, yet his
contribution was def!hitive. History justly claims him as a founder of the ',
. We may be certain that Newton obtaineé—his results in mechanics by )
integral calculus, but in’ his published exposition, Principia Mathematica,-

“he insists on ‘not using calculus m-even though he invented it for: himself.

‘He argued that his readers would find his mechanics shock enough without the
difficulty of learning calculus._ Whether this nade Principis easier: reading
for his contemporaries I cannot tell yous; unquestionably it makes it harder
for us. The elementary but obsolete methods used therein can compete with the

. ;‘calculus as successfully as the abacus with the electronic computer. ﬁowever,

fortunately for both author ‘and. reader, Principia ‘contains cne deduction which
is as simple as it is important VIt is the answer to the question posed above.:ﬂ
What is the orbit of a planet which continually accelerates towvards a fixed

v
a s

We suppose a¢planet P the instant it is at Al to be movdng at v
upon by any external force. What happens? In accordance with Galileo s Law i ;

' of Inertia it continues to move unifonmly in a.straight line with. a Velocity ‘
of v ft/Sec.. Consequently, since velocity is. space traversed in unit time,

2,' v feet from A, and the- directed Ll

_line segment AlA represents‘in both magnitude and direction its velocity

4.

;one second later it is at a point A

v

during this. Second. ' S ',:. -

‘Also suppose that the moment P reaches Aé it receives an instantaneous

acceleration. towards. - C (C is. for Center, say, the center of the Sun). What
does now happen? Had our planet not received this acceleration when at . A2
in accordance with the Law of 'Inertia it would, of course, have continued at

v ft/sec along AlA (produced) forever. One second later it would have .

. been v feet from A_,. at F such that AlA = A F (F 4s for Fictifiousi-

2’ 3

2 3. ‘ T
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But when a.t A2 ‘our planet receives an a.ccelera.tion towards C which is”
represented in magnitude and direction by (say) the directed rﬁne gegnent

2 3 Thus- the resultant velbcity of P ‘on lea.ving .l\.2 is represented by )

the diagonal A2A3 of the vector parallelogra.m 1llus%rated by Fig. 18

’

"Eigﬁ L]re lé Lo

What happens a.fte{rwards? Remember that the a.ccelerating impulse which:

. acted Qn~ P when at - A2 a.cted only for an insta.nt. When P left A2 this

impu.lse no longer dcted. So a.fter lea.ving A2, in a.ccordance with the Law
j of Inertia, .P contiluas to move in the direction’ A2A3, tra.versing a dis-

tance A2A3 every second -amtil it is subjected to another extemal impulses. - ;

: One second a.fter lea.ving A2 our planet a:ctually rea.ches A3'-"3 (A 1is for

Actua.l) L e RS

At A3 we suppose our planet *’ recei'Ve another 1nsta.nta.neous impu.lse

-

towards C." Simila.rly, this ca.uses a second 1nstantaneous change of velocity.' :




-

i

" diagonal ,A3A"’ivL " of the vector parallelogram illustrated in Fig. 19. . . « -

v

Y

Had P not receivéd an accelerating impulse towards C/ when at A3, ﬁ'fE'f
1t would by the law of inertia have continued along AEA--

reach Fh a second. 1ater. Had P not had a veloc;ty A2A3 when. it received -
tat A3 xan acteleration towards C, it would have. ed along A3C to reach
Ch' a secondzlater. With both velocities P, actually travels along A3Ah
N and reaches ”fh a second later.. It-is unnecessary for a8 to consider the
.. 3 ‘next accelerating impulse’ giVen to hk at Ah "V . ‘- '
- -Careful consideration of the. consequences of 'these discrete discontinual
. accelerations of P towards C 18 the key to.determination of the conse-
quences of'cpntinual acceleratlon of P towards' C." : -
Note: that in Fig./l9, A2A3 = A Fh and that F,A h || AsC, (because [

“to A Ch fet us redraw this figure with & new emphasis. Fig 20

LR
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‘ .@gf:ause A._sv CA§A3, CA3Fu ave' vequar‘lv.ba_s.es __A2A3,.A3Fu. and. the ‘senfle .
' a%}:_itude ».theysare equal’in area. ‘“SymPQli'callY, )

[ °,

5 : . L.

K

;. And because -"A's: CI_-\.3Fu »/ CAgA), . heve the same base- CA3 and equal eltitudes

\%‘, (becausethey lie ‘bétwelgn the same parallels f‘uAu, {\30) , they also are equal,

w :i;‘,‘i'mclude?“ What is the releyarice of this result tb the known - .

he t’ion"; That. in two consecutive seconds (actuauythe secx s

ning the cen-' _
But isn't it .-

rd,\ pRt this s ‘no_t 'iinpgé’tant) the radiug Nector joi
et g atfﬁé{pﬁién‘ e '*E'c_;i..:z:bgr:‘_\piavnét _ P sweeps out ‘eqﬁal .a_.re'a;s','._r:
' cpéar thst the é:i'gument.;lould; hold ££ We took Bome other uflit of time instead |
ot ;a'.!..sie'cor'xd? 'Alfﬁerhatively e 6ould. take & _*l;e':r'xth' of a second; Qr & _hpndre&th, .
.i.".;,_" or a ‘mi-ll}'onth_,, ora bili“.'ti'd’g.:it"i’x,'. or a. trillionth, or vee o b8 theequal L
intervals decrease in duration in effect of jerky ,julgmr discrete ceritvral’..';‘
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accelerations differ less and lesp perceptibly from that of continual ntral .
acceleration. " ' _ ) '
What must ve conclude? That.if e-‘pleqi’et P has e oontinuéi central
E acceleration towards C, then its orbital motion is such “that ite radius
_vector _ PC sweeps out eqﬂalq‘areas in equal times. But precisely‘t_hi_s _i_s_‘
KBPler’ ,,Second Law. SR .ﬁ o A S
; o Seldo i has Such et simple argmnent had such important repercussions. Tt
°.€ ’. ‘convinced -Newton -'-__jand shonld convince you--that the planets a"re accelerated

“towards th Sun. Regard Fig. 19 and 20 with respect: they link, together
the mechanics of terres:bial and interplanetary ‘space, .- coo-

3. 2 y - What 1s “thé Law of" Universal Gravitation o A
We have see ”how Newton by discerning a, continuous transition between the

_ fall of an apple, the tra;]ectory of a cannon ball, and the orbit of a planet’
was led to. con,jecture that the planets have accelerations -towards the Sun as
" do falling app _es towards_-the Earth,. .And how dig he adduce strong support

for his con;]ecture? By showing that: Kepler & Second Law is a necessary conse-_

quence? (It is Just ‘possib‘le ’qhat Kepler's Law could be a necessary conse-

quence of an alternative conjecture.) S .

What 1is the _next step? Granted that the planets do accelerate towards the .

Sun and the Moon towards the Ea,rth surely, because of the regularity of their

orbitS’ these accelerations cannot be haphazard affairs ’ but must be subject -

to some law. - And isn't the whole point of Newton 5. insight the continuity '
.. of the trandgytion? Surely'-l".imilar -effects have ‘similar cauges.. Surely the -

Earth's gravitational pull on the s:pple, the cannon ball, and the Moon must
)

»

'be of the same nature as the Sun's gravitational pull on-the Earth._ 'Surely- .
. there must’ be a 'Law of UniVersal Gravitation. The next'step is to specify .
SRR T - L , - Y
F " '

K8 viy,

A% school, ‘I was .cheated by . my physics tea.nher._ Con;]urer Newton puts

. 'up the most spectacu;l.ar show on Earth -=Or the 'Solar System'*-by producing
the gravitational rabbit from the universal hafs. And what did I get? A
" bland statement of the Law of’ Universal Gravitation without -any indication kY

‘e

! ‘.z W

_.of how the trick was. done. : . - . ;
How did ‘the rabbit get into, Mr’ Newton 8 hat? To appreciate his legerde- -
) ‘ .main you must first learn 8 basic trick ‘of orbi-tal con;]uring, namely deduction
T . of the cent:%l p.cce]’.eration of a body moving with “uniform circular motion. ‘
o The mo‘ét elegant method of dealing with the latter wasg found, subsequent to
Newton's derivation, by Sir William Rowan Hamilton (1805-1865) the inventor

of the Calculus of quaternions. To- §1r Willien's method we now turn. . . 't
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3 2. 5 Uniform Circular Motion.. Hamilton.s Hodograph

We consider-a particle (or. planet) P to move with uniform motion in a

circle of radius r and center C Since P moves in &’ circle, the direction

of its motion (tangential to the’circle) is, of course, continually changing,

and consequently, its veldcitx is continually changing also.’ But, since P's

; motion is uniform circular motion: it moves equal ddstances in .equal time, that

is, {ts speed v (the distance it goes in unit ;ime irrespective of direction)
i is constant.- Therefore, if the velocity of - P ‘at . PI is represented'in both

magnitude and direction by A1 and its veldcity at any other point Pé .
-represented in both magnitude and direction by P2A2,‘ then both directed line

segments must hawe the same length.v Furthermore, this common length must be

. equal to v, the space traversed in unit time. See Fig. 21.

f*,.That the*velocity vectors lAl’ PgAé have the same magni ﬁe was of '
gl ¥
gbéat interest to Hamilton. What is its significance? Yes, of” course, it*

LN T 9»5\-"”

__implies that P -moves with constant speed. But what other significance does

it have? .Bamilton introduces &8 new representation to exhibit this other

o

' significance. He terms it 'a hodog p S -0

Suppose ‘duplicates of the vectors lAl’ PgAé to be moved parallel to

" the originals so as to originate from seme fixed point 0. See Fig. 22.

15”"



o R  Figure '22' ‘i g
EAl"’ is the'duplicate of T lLl and OA _1is the duplicate of P2A2 e

And since the duplicates are parallel to the originals , the angle between the
duplicated pair is equal to the angle 2] between the: original pair.  ‘Conse-
. quently we may think of Figs. 21 and 22 as the dials of . synchronous watches -- ., .
synchronous in the sense that as an arm CP rotates wniformly from CP .
CPé on the original dial ‘an arm OA rotates frop OA1 to OA2 on the _
hodograph dial. It follows that OA will rotate full circle from QAl back -
to OAl‘ in the same time T as OP rotates full circle from OP beck to .
OP . o :

. : What 'follows_? In time ‘I’, traveling with uniform speed v, P .traverses
‘the circumférence of a circle of radius r. So, ", ' T

" v —anr. '

. . - e
Similarly, in time T, traveling with uniform (because synchronous) speed
& (say), A tra.vels the circumfererice of & circle of radiys. - v. So,
‘Mg = 2:rv. o .

Hence, S X » S

N
£y
<

' I?lll;;
1]
?

2
i

i.e.,

<4l
e
sld

80 that. o , ‘ : : -

: 2 -
.‘f‘;".. : a = V? o o (ll') _

'I'he simplicity of the ma.thema.tics belies the subtlety of its interpreta—
tion. Whit is a? = ‘is, because uniform, the speed of the vector tip A ,
at any instant the instantaneous speed of A.‘ And what is the instantaneous N
" speed: of the vector tip A? The answer to this question is Hami_'l.ton 8 ingen-

- lous insight. It is bhe mgnitude of the instantaneous rate of change of

u WS




' \[ 131
.velocity of the vector OA. .But, OA is the duplicated vectdr representa-
tion of P's velocity. In short a 1is the magnitude of.the instantaneous

”; acceleration of  P.

Thus, (ll) gives the magnitude of P's acceleration. ‘But what is its

direction? Because of Newton's argument. that the planets do indeed accelerate

" towards the Sun, you are no doubt prepared to accept the view that the acceler-
ation of P is tovards C. However, it readily follows from Hamilton's
hodograph that such is the case, thereby bolstering up our conviction.

* The motion of A when at Al’ for example, is instantaneously tangential
‘to the circle 0 at 4, i.e., perpendicular (down: the page) to OA in Fig.

22, and consequently parallel to. PC. So the acceleration of P when at

Pi is. along; Pip. But A, P, are (corresponding) arbitrary points In
short we-conclude that the acceleration of P is invariably towards the

center C of its circle of rotation. : . s

What has been ‘'said in short about the magnitude of the acceleration, may
be said at length--at the expense of spoiling a good short story. Suppose__ .
that- 0A .is in the position OA2 time 't after;being in.position OAl.

‘We -complete the vector parallelogrem OAlAgB. See Fig. 23.

-

. 1}
. .
L
Fﬂgure 23 R
@, {is the resultant of OAl and OB, so that the velocity of P at - Py

nag to be i.ncreased by —B’ for P .to have velocity OA2 at P,. But this

incre&se of velocity. OB occurs in time t, so that g? is the average

rate of increase of velocity, i.e., the average acceleration of B 1in moving

fromv Pi to P - But, .equally well we may take the equivalent vector

AlA instead of 0B. (Considering the v,aqtor AOAlAg,' velocity 01:1
. _ C,

.
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has to'be increased by A1A2 to 'g'ive QAg).,‘ Consequently, C— is the '
average acceleration of - P in- moving ‘I‘rom P, to P,. I R
L0 Next, suppose A2 to be arbitrarily close to Al' The closer A2 is

- to Al the more nearly T ' '

’ Lo ) A ' . .
' length of AIA2 .afe A A, of hodograph - Lt
_ . and, -conseqnently, the more nearly _' T o
N : AA, . AA . R
) . . | e length’ A]%E - a1'c A1A~'2 - : E :
¢ : »length;o are A1A2 = axt '

I Ay

hd

. 80 that

a.’

] Thus , the shorter the interval t, ‘the more nearly -
L length A1A2 - = o
._We ‘conclude that the magnitude of the instantaneous acceleration is - a.

' 3 2.6 Newton s Discovery of the Law of Universal Gravitation

Newton's great discovery is specification of the relation between'the ’
acceleration a of a planet P towards the Sttn and its distance ‘r .from
the Sun, the provision of a formula for a in terms of r. “Just this --
and the audacity to suppose that every body in the universe exerts an adl -

) celerating force on every other body 'in the universe in accordance with this
' formula. What is the relevance to Newton 8. discovery of the formula giving '
the central acceleration of a body- moving with uniform circular motion? A

- clue is the reminder that an idealization, a good first approximation, often .
reduces the complexity of a problem to what is manageable. What holds in

] the simple case may perhaps hold in the general case ) or be at least a good
- indication. . : .

_ ' According to Kepler's. First Law every planet moves in an elliptic orbit T
with the Sun-at one of the foci. In fact the, planets move in elliptic orbits
that have very sma_ll eccentricity -- orbits that are very nearly cirecles, -
Mars, of which Kepler made a special study, has a less circular orbit than ‘
the other planets except Mercury. ,ﬂ:, like the other planets, has minor
perturbations or deviations (due to the gravitational attraction of the ]
other planets), yet 1ts orbit 1s still a very good first approximation to a
c"ircle. Introduce simplifying idealization, suppose’ that it is a circle.

) What follows? . ' '
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According to Kbpler s Second Law, the motion of a planet is such that
~its radius vector from the Sun sweeps out’ equal areas in equal times. But
if the orbit is a circle, then obviously équal areas cannot be swept out in
" equal timeB unless the motion is unifbrm cifcular motion. ‘S0 . Why,.of
_course, (11) is applicable. Supposé that R i ‘the radius of Mars!' circular
orbit ‘about ‘the Sun and. v its uniform speed, then’ by (ll) we have that ‘the .
—magnitude a of Mars! acceleration towards the Sun, its centripetal - accelera-
"tion, is given by {' : . _.__‘ ' o .
‘What follows? We have ,a. in terms of R ‘and wg'rNewton's’problem is
to obtain a in tem of R alone. ' Therefore we must eliminate. Vs we
need a'second equatio . Cast WOur mind ‘back for a moment “to the derivation
-of (ll) If T is the period of Mars' orbit then we have a precise analogue e, N

to an equation used to obtain (ll), namely

T « V= aﬂR
go that - )
o | 2
‘- . = R

Squaring, and substituting for - v2 in (lZ),hweihave"

a=?R« i ';" 7 (13) I
iminated v at the expense of. introducing T. Are we:really any

" Remember that the existence of a Newton presupposes a Kepler. -
Sntt! Kepler something, eomething important, to s,ay about T2
f,According to Kbpler‘s Third Law, the»square 0 . T 1is proportional to the

‘cube- of R. Put alternatively, T -is proportional to, R3/2; algebraically,
. T:C . R3/2 o 4 :. 'v ’ *
4 where c iz a constant independent of R. ’ L
" .Squarins,

. ] Sy .
b<
8 = ——=— R
c2R3 k&
i.e., ‘ : R =Pl+ﬁ2 . 1 (1]4_)”
c ;%i a

O
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" 8o thet a is inversely proportional to the square of the distance between
Mars and the Sug. We now. know Newton's specification and know how he dis-

coveredfit.. :
- . ) .

3.2.7 Scientific Attitude: Verification

The difference between conjecture, hypothesis, theory, and lav is a dif-
ference of degree Trather. thag a difference of kind The difference of ter-
minology is one of emphasis, indicative of the well-foundedness of the’ propo-:
‘g§ition in question, and consequently, the degree of conviction with which it
"is held. . , . . :

The idea that a cann0n could, supposing sufficient muzzle velocity, be
.its own target is a wild,conjecture, that a cannon ball could encircle the

'q-Earth to- return to its own starting p01nt is merely = firight: of the imagina-

‘tion. -But- when such a conjectured flight is seen in the context in which
TNewton saw it, as an intermediate case between the falling applels. trajectory
and the Mbon s orbit, its status changes. The aspect of continuous transi-
tion gives the conjecture plausibility enough t0 be considered seriously. N
What fancy free, might- well ‘have been taken from the pages of Gulliver 5 - T

Q-Travels or Alice in Wonderland might perhaps after all be a physical reality.

Wild conjec¢ture becomes sobey hypothesis. , . . :
When Newton showed that Kepler's Second Law is a consequence/of the hypo ¢
thesis that the planets accelerate towards the Sun, he had a most substantial )
indication that planets moving with a central acceIération towards the Sun
would have the sort of orbits which they do in fact ‘have, Falling apple ;
and _orbiting Moon have & common explanation, the terrestial and planetary
pieces of the cosmological Jigsaw puzzle £it together.' What was enter-
tained precariously is held with some conViction, hypothesis becomes theory. . '
'Applying Kbpler s Third Law, theory becomes: specific theory ‘that the -centri- . ‘
petal acceleration is inversely- proportional to the square of the'distances
.Galileo,nusing the recently.invented telescope,“discovered that Jupiter
.has three moons in orbit about.it 'Later‘he discovered a fourth. It was
found that the period of revolution of Jupiter's moons, as those of the "
planets around the Sun, satisfy Kbpler s Third Law. Here too, planets (i, e.
the moons. of Jupiter) orbit about their sun (Jupiter) in accordance with ,
' the law .
. -»R3/2
Here is a second planetary system to the same law, the only difference being
applicability, each system has. its own *value of ¢, the constant of pro-
portionality. These considerations were. of- great importance to Newton, that
'Kbpler's'Third Iaw also holds is a.iinm.indication of a second planetary
: . 3 . .

-



s
Ly

: _system in which centripetal acceleration is inversely proportional to the
o square ‘of. the distance. But if t this helds for two planetary systems )
- “why not for a third a fourth, ...? And 80 Newton was led to his theory of

.universal gravi ation,* . e : .
" But_how inl hysics does theory' become law? The act of "legislation

: that puts theory on the statute books of ‘physics is verification. And how_: _

- could Newbon make verification? By bringing his theory of the heavenly * =~ .- '

" bodies down to earth, so to speak. ‘Is not’this plece of chalk with which I

. 'write on the blackboard as is the Moon, ,just a.nother pla.net of the system

whose sun is the Earth? But when I let. this chalk £811 -1t accelerates towards .

the Earth's center with terrestisl acceleration ¥. Ts the-value of g, "

the central acceleration of our little pla.net as deduced from Newton .5 theony

the same as the factual measurement of g? This is: the crucial test ' ¢
.What -is the theoretical value of g? Newton deduced it in the following

way. By hypothesis ) centripetal acceleration of Moon and chalk are each in-

versely ‘proportional to the square of its distance from the 'center of the - i

. Barth, i.e.; both setisfy the law (equation (11+) with notational simplification)

B centripetal acceleration.— —«-—fi—— N (lh )’ :
' (distance)® . :

._wher‘é c is a consta.nt of proportionality, independent’ of the distance. .

(It does the mind no harm to remember that ¢ stands for constant and for

_ serftiipetal,) Let R be the distance o.f ‘the Moon from the center of the

""“'Eaz:th and - gM (M 1s for M) the Moon's gravitational acceleration towards
the Earth's center, then : ‘

Likewise, iz r is the radius of the ‘Earth, and consequentlsr the dista.nce of
my chelk from the Barth's center, and gy (E is for Earth) my cha.'l.k's
gravitational acceleration towards the Earth's center

7‘¢

. 'to be a-ci le, a.nd consequently by Kepler sjz

uniform circ™ar motion;.say v,

so, from (15)'



-and- thus & :
_ Also, since the Moon L motion 1s uniform circular motion, taking T to be its

- orbital period,
MR -

TTEL ' : . ‘

‘Squarin'g,,'and substituting for - v2" in the preceding equation :
o L 2 -
SV s (2;:;2() "R,

Na

R . _lmaRa '

[ e

e . / . o
< ’ i ' .
\

-that 1is,

" Unfortunately e cannot be measured directly, but gE can. From (15 )

- ' lnrzR3 . L
[ Lo &g = . S (16)
. ' . v o T 1‘ ' . . .
This expresses the g:Lavitational acceleration at the Earth's surface in terms o
" of the quantities ry R, T known to Newton. The principal ingredients of

‘this deduction are iven-in the following diagram: "Fig., 24, * no d

Flgure 2k

. Does Newton's theoretical value for gE; colncide with the experimental
value? Does the formula check? This you can find c{lit'for yourselves.
Newton 8. data are: s ’ '

thé rqdius of. the Earth, r =6, 3784’ ~106 meters ,
_ the distance of- the Moon from the Earth, R = §81# 4 x < 10° meters
(so that the Maon"s distanc¢ from-the Eh.rth is about 30 times the Earth's
"""diameter) and - o ' o -
the period of the Moon's orbit, T = 2'( 322hdays T e
A1l the data are given to 5 significant figures ) except R, which is given to

T, So wor to. 5 figures and your enswer (supposing no aﬁ&:hmetical mistakes) -
will be rel ble' to k. Secondly, 1f you know the dimensions test, apply it to
(16) to che k that gE is the sort of quantity 1t ought to be, na.mely an

145
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- that his derived value of gE conflicted: against the factual value ‘was for

- acceleration, LT.Z. I shall illustrate the importance of this procedure ‘in

the héxp section, Section 3. One more question: How cant 8g . be determined-

. experf&entally? Yes, by a pendulum experiment.” This also we will consider
is 9.806 meters/seconda. (cf. Principia, Book III, = . .-

‘in the next section.
Proposition v.) .
» To his consternation, when Newton did the arithmetic the- answer . did not

&g

- come’ out ‘close enough to the observed value.. This set him back eighteen years.”
) The - theory must fit the facts; this is the scientific attitude.

We must mention that Newton was reluctant to publish for personal reasons.

Sensitive, reserved indeed somewhat of a secretive nature, he hed a strong S

distaste for controversy--and with good reason. )ﬁis previous publication of

diis gptics led to a violent quarrel with Hooke who was all too apt to be &8s,
" bitter as he was brilliant, and his discovery of the calculus to similar

- unpleasantness with dts other discoverer, Leibnitz. Yet while it is true

. Newton was reluctant for fear of further controversy to publish'his Principia,

him in itself sufficient reason not to publish. Because wrong in an important

particular he would not publish,. yet if right he would have been reluctant.

So much of Newton s theory fitted so well that he asked himself if the
»data applied to (16) were. well determined. T, - the’ period of the’Mbon, was .
known with fair accuracy from Babylonian and Greek times; the determination
of r and R, oonsidered earlier in these lectures (cf. Eratosthenes)
although only roughly determinedvby the’ Greeks, were known‘with but slightly
better accuracy in Newton 8 day. He decided that r was probably i1l

detenmined, ‘and awaited its redetermination by & scientific expedition of the

French ‘Academy to- South America for this purpose. Their evaluation of r
gave his theoretical value of 8g “.close agreement with the experimental; the
theory but not Newton, was ready for publication. Finally, at Halley s
insistence and expense, Philosophiae Naturalis Principia Mathematica was

published. Is there an inverse square law of publication that an author’ s

urge:to publish 48 "inversely proportional to the square of his work's merit?

The thoughtful reader will note a few neglected circumstancest for exam-'

ple, formula (16} is derived on the assumption that the Moon moves uniformly

~in a circle, ‘yet if Newton s .theory is correct. the Moon 8 motion will be in-,

fiuencéd toa very minor’ extent--but nevertheless influenced--{by all the
planets and all the stars in all the gelaxies.: Secondly, vhat is "the correct"

T; value of gE? Sinee the Earth is not & perfect sphere, r, and therefore

8gs. vary. There is another reason; the rotation: -of our. Earth gives my '

*
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.falling ehalk a. entrifugal acceleration, so that gﬁ is dependent upon the
“latitude. And t en ..., but you can.find others for yourself. Isn't it

a wonderful thing that idealization enebles effective investigation? For
-otherwise, , sureiy Nature 5 complex,ity would bury too deep h o

.tl

for man -

to pmbe . :

‘ 3 2 § Hindsight and Foresight L PRCOR S
_ Newton was not the only one, nor the ffxst, to conjecture the Inverse
Square Law. 'His brilliant scientific friends, Halley who on the basis of
- Newton's mechanics made with spectacular success the first predictiqn of a o
comet's return, Hooke ‘who 1s remembered by his Law of Elasticity'that the ;uﬁ?i
“tension of a wire is proportional to its stretch and Wren whose solid mathe-
.matical achievements are overshadowed by his architectural ‘all thought of it.
The crucial difference is that they ldcked that combination of insight and
_mathematical ability necessaxy to lock it in with KEplerfs laws. Newton o
turned the key, his colleagues couldn't they couldn't find a key to turn. ;:'4i~
In retrospect, Newton's theory seems obvious: How could it possibly have
‘.been otherwise‘7 Oh yes, told that this is the key to turn, and this the way
to fit.it into the lock,. the rest is obvious. It is ‘tempting to say.that.
Halley, Hooke, and Wren also foung-the key -~ but wouldn't this be misleading,
really? What use is -a key if you, can find no lock for it to fit?
KEpler also thought of the ‘Inverse’ Square Law; he thought of iqyfirst
It is interesting to see how he arrlved at it and especially Anteresting to
'see why he rejected it. _
~ Kepler regarded gravitational attraction as analogous to propagation of
-~ light. ‘His analogue is concerned with the intensity of propagation. Let
us introduce this necessary preliminary.. '

It is an inescapable observation’ Jthat the Sun emlﬁs light without sun-_
light there would be no Iife on Earth. Climate is related to latitude, for
on. latitude depends the angle at which the Sun's rays strike'the Earth and
.on the angle depends -the area of the Earth's surface over which an incident_
bean of sunlight is distributed ‘See Fig. 25 o - r'

g
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Because of the Sun B great distance from the Earth *its beams, e. g., B, B""
will be sensiblyv,para.llel. And supposing, as see%s natural,‘»»that the Sun

 radiates light ;equaily in all directions,. beams _B, B', 4f of equal breadth, "

- will c%tain equhl quantitiee of sunlight Equal quantities which" a.re dis-
tributed over unegual’ areas, for obviously area. ac 1is less than a'c'
With the sunldght more thickly spread ‘more heating, the tropics are hotter

o

than the poles. » Thus the concept. - ' S o . F ,.I?j'

intensi’by of sunlight quantity of Iight
. . .. area .\'t‘.\'“

natura.lly presents ftself. But, 20 units of. light fa.lli.,ng uniformly' on 2 *

v

square centimeters is.10 units falling en each square centimeyég'-'
n intensity = quantity of light per unit area. : .. .
- It is\not necessary for pursuit of Kepler & 1ine of thought to consider in
detail how the qua.ntity of sunlight is to be measured or the unit w\employ.
Consider now the intensity of light falling on a planet P at a- distance -

k R from the Sun.. ‘Let 8 -be the ‘total amount of light emitted 'by’ the Sun.

ﬂ‘.“ .

A

Again, as seems natural, we. suppose this to be radiated equally'in'.a;ll direc- .
“tions, 80 tha.t the intensity will be the same at all points distance R from
the Sun Butbthese points, or to. be more precise, the’ immedia.te neighbor- N
hoods of these points, .constitute a spherical shexl (with center the Sun

whose radius is R and whose surface area) therefox;e, is lmR . Conseq' Sntly,

S inte'nsity of radiationat P I%_lé' R .-f‘ -

o
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: - discovery. !I'ha‘{;, he 'id so, or ra,ther that he was dubious, is to his credit'__
%\ he miptristed. the, ] '

Earl:h there is no dismntinuity in ~the Earth's motion. If‘ :gra.vitationa.l
attra.ction were ra.diated as light is-mdiated this too would be ‘bempora.rily e
‘ f.blocked by the Moon, so that during the eclipse it would discontin'e'iﬁs B
e111pt‘ical orbit about the Sun. ' But it doesn't " . Therefore, gravi tionnl

'?1 attraction is not mdiated as light is radiated. “See Fig.-27.
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Kepler '8 argumbnt is a good argument do not let hindsight preJudice you .(r'
agaiqst its merits' any fool can be wise after the eVEnt Try to view the_ ',;' O
problem anew. That the Sun can- keep the Earth in orbit and the Earth the B
Moon without any material connecting link is, to” say the least .8 most nws-_' . :
terious affair.' It has been calculated that a steel eable, equal in cross

', sectiomr to the Moon's dia.meter, would not fastened from Eart:h to Moon, be". N
strong enough to replace the Earth's gravitation&11 pull on the’ Moon. ;How- can '
' empty space be stronger than steel‘? The notion has the improbability of -
H. G. Wellsg 'I‘ime’ Machine stories. T B : oo e
Only & lunatic or a genius could believe. the Moon tQ be kept in orbit .
) by force tra.nsmitted through empty space. . Kepler, not'a 1unatic, rightly '.' ". _
rejected the inverse Square conjecture, Ne,wton, not a lunatic, right1y°ac- ‘ _
cepted it. Kepler 8 conclusion was right relative to -his partial understand-
ing (and partial misconception) of, the problem. Newtonowas Justified for '
) he --if you will pardon t’he colorful phra,se - 'was not mis;.ed by that red
v. herring,, white light. He /Saw clearly vhat Kepler couJ.d not appreciate ; )
. that cqnsequent ‘upon Galileo's I.aw of Inert'ia an orbiting body ‘ﬁnust have‘an .

v

"acceleration touards the conca:Ve side Of its path --andwea are back tq the
n w' rpe q
¥ ..falling apple 7 the cannon ball;

dthe Moon. TS ‘ -
. The rest’ of the story“‘we }mow =7 Newton's eager‘ utiliza.tion of Kepler s L
three laws. Yet it would ‘be a mista.ke to suppose that Kepler's works dis- o e
- played his laws for the comrenience of posterity, chameleon—like they were :_.5.7fj '-__‘f
camouflaged By tneir context. ~ Kepler, tHe last in the great Pythagordsi 3 -
. tmd,i,-t(ion, had the magnificent ambiti" to'_explain the whole universer**l'ockw )
| stock}and barrel, in one devastating, all-embracing synthesis of geometry, T
nrusic, astrology, astrononw and epistemology. o Newton was J,ess ambitious. "In . o
Kepler s Harmomr of the Workd (l618) s the sequel to his COSmic Mystezy (15'

5 .smll part of the flot.sam a.nd gje{zsa.m cast up by hiB restless tides of ‘ S
’ thought. It rem.ined for Newton -to pick over' the driftwood. He was.a , . R ":;

R s S
1 " . 7 N . e . . ras
. . - - . B . .

'. beachcomber of- genius. ':j, : ' . _
. And how shall we best’ remember him? His friend Sir Christopher Wren, S
architect of, St. Paults Cathedral and hosts of ‘othex: famous buildings, was 3 oo

o

- fond of saylng. ” "If you want ' to see nv monuments s look around you. Were : '54', o

.', Sir Christopher alive to make that remark to Sir Isaac today, pne can well " _
' imagine the latter 8. retort a shrug of the shoulders followed by a sly Jerk P
f of the- head 11, the direet:l.dn of the Sputniks 5. ;.uniks ; and Telstars. Daily, __ )

his monuments beoome more numerous. R

N - ..




 Section 3. The Pendwlum T Y

Pr:lmarily for two good reasons we begin this section with the “"common or-
garden variety of pendulum such as makes ani grandfather s clock go tic-toc,
tic-toc, and was used By, Galileo in his,experiments conside:red earlier' S
firstly, because derivatibn of the right kind of formula for »its period of w7

-oscillation' is 'qhe classic illustration of the dlmensmns ‘best secondly, .

because this ‘formula is. essential to verification of Newton 8 Law of Universal -
Gravitation by pendulym determination of g. ' ‘

3.3.1 ' The Dimensions Test h ',' ' o :
This has nothing to do with the Hollywoodb directoi‘s' measure of a female

"f‘ilmstar's probablefbox office appeal; it 1s . test to ensure ‘that formulae
~ make sense, that tbe,quan‘bity indicated by the lef‘t hand side of an- equation

is of the sa.mef kin‘d or category as, or. is syncategorious with that indicated

by the right. ¥ S S e
* For example ) suppose it con’,jectured that the volume 'v of a sphere is f." 3"‘.
o given by . o

[
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. 3 'a specific '(but_ here urspeci- -
fied) number 1ndependent of r. Since r .is a length r2 is an area,.

aﬁd, c - r2 a larger or smaller area than r2 according as ~c is greater

ror~ less than unity. In short the formula states that a volume is identical
” ~ .
with,.s.n area, or that a qua.ntity measurable in cubic units is the .same as a

quantity measurable in Square Units.. Isn't this a.n absurd thing to sa;y" The '
quantities are not syncategorious, they are of different kinds. :

. Contrast this formui for v with

l_. . . ‘1..
. v=c,‘,-' r3l. S
i . . T o

Hene v, and c . r3_ are both measured in cubic units, 50 that the quanti-

ties are of the same kind ‘and the\refore comparable.,- The formula is the’ _
right kind of formula, it makes sense. If» ¢i= l—;qt, we have tHe right formda -
of the right kind, yet note that ir c is taken to, be any ‘other number, say.
16:r ‘the formila - still mkes sense. It happens to b.e false, we have & wrong. »

“formila of the right kind. Conceivably ¢ .could have been, 16x; what is.in-
. o .

c@ceivﬁle is. that, for- exa.mple, ' L AR . &
16;r : 2 : '
. or oy . . o 'l ' \
T o ';{, En-r./- o o
- BRE " 3 . o o 3
It Just doesn't make sense to say that a vo,lume is equal| to an area, the :




O
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. quantities are not syncategorious, thau cannot be compared. Liﬁewise; «the

most all three if) the basic concepts or dimensions, length, mass, ahd time.

ras

fussy, 0 dimension of mass, ‘for 1ts d1mensfons could be indicated schemati-

'.-4'

[SaH
H
=

(O]

o - ' , o . B . .
tEen-agEr who says that his age is fourteen hundredweights has confused his . "
categq;ies.- - . woE . e \\ o : .

: The dimensions test is "the basic'logical 5rammar of physics. Although,.
unfortunately, it does nqQt ensure that’our equations, must be true,'it does . .
ensure that they do. make sense, that they could cohceivably be'true. The
dynamicist 8. working concepts, for, example, velocity, acceleration, force, »

impulse, work, mpmentum, energy, power, may each- lé'defined ig teTms of (at .

Fbr example,‘-.3 ) o, . AN ' ". . . f-
) = !qn . L .
kinetif energy v - _ . ‘ »

,‘ . D L2

®
-

_l" ’ ’ )
where, of course, Jn is the mass and v the velocity | questioq But,-‘r,
veloaity is defined as displacement or length per unit time. Taklng, as is . *
usual, the letters L, M, and T for'ﬁength mass, angd time, veIocity is

indicated schematigally by

L 4
‘

L. . . ’-L.l. _." B ' . ' e
1.@ .or QL.’ T . R

It ‘has'1 dimension of length, -1 d1mens1on of t1me-- and, if you wish’ ‘to° be :

[y

"~ cally by T T & L - S

K}

R N R - : L

Consequently, proceeding schematically, for v2 we have

: , (Ll -0 1)2 or L2 . Mo_- T-? L I
and, for kinetic enérgy . » '
' ' '-'(%M') c12 0 78

or, respecting the alphabet and ignoring the pure number 1 (singe this affects. G

¥

2
only the amount of the quantity cons1dered, nokt its quality or category)

s EMT? : SRR
: K1 X4 oo

Next, let us -check the dimensions of (16), the formula 80 important for

Newton ] verification. Slnce acceleration can be measured in cm/sec2 the

dimensions of gE mey evidently be indicated schematically by

v ' . % or Ll 72, '
But, proceeding schematically, S s . : . .
: o ! e ® i - .
.~ R = Numper) —EL—2=—I‘2- or'L'l‘Ife'. o S
oo T2r . oo T e L T e Co T
- Check. The test does not. shoﬁfthat‘the fonmula is the correct formula, s
but it does show.that it is the right sont of fjrmula, that it makes sense. 5
"o -.".v' “b 1'.o~ " ‘-.‘ . * ‘
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. ‘Had' the test failed the formula could not have made gense, it would have _

: ,' : been absurd. 'I'he test is a necessary but not sufficient condition for- correct

V- formilde. , = .

N ' let us sum up:  Any, physical qua'ntity. Q has basic dimensions. a, B, _
and ¥ of length mass; a.nd time (and there are no others) Schematically .

| - e=1%Pr’,
ana, e L
A S e,
i 8 end Q’ ‘are quantities of the same kind (but not necessari]y of the same
' amount) if and only if ; ' :

N

’.'. - . : ETE ) d= a', B— B', and ‘y = 7! .
N . . - .
3. 3 2 Simple Pendulum’s Time ‘of Swing

As with GaLileo 8 pendulum experiments we, suppose": idea.lization, that the

frictional resista.nce of the air, the weight of the str:l.ng, and the dimensionB
of the bob may be neglected., It is of course essentia.l that the ‘bob be '
“heavy; with a feather for a bob air resista.nce 1is obviously not negligible.

We suppose ‘the length of the string to be £ . See Fig. 28.

L 9

. . .o ‘ . jFigure 28 -

Our problem is tp find 'I‘ ‘the time of' swing, or more solemnly put,
period of oscillation, of the bob ‘By this we niea.n_ the time of a complete
.swing, “from A~ acroBs to A!'. and back to 'A,.L as vher a'gra.ndfether’ '

. ..,.'clock gOes. tic-toc-tic This point is of importa.nce as mny textbooks give
."e formula for only a half-swing, tic-toc without the succeed:l.ng tic. ‘
On what does T depend? We must ma.ke a con:jecture, to Jug hare, first

N 1’5\,

cdtch your hare.:
O
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Let us begin with What we know, congenital physics.- Isn't there some

analogy between the swing of a pendulum and the swing of the Yeg as one .
-.'strides along? Even in this car-ridden country motorists become pedestrians

to reach their automobiles. - Haven't you ever 1ingered at a street comer

to observe how.people walk? ‘Presumably Aristotle did - - for he observed

“that there is a minimum speed at which one can wa,lk ‘Also there is a comfort-_ '

able’ speed. for each pedestrian, when the swing is natura.l and unforced,
shorl'. legs natural]y swing more. quickly than 1éng ones:. Doesn't this suggest
that a pendulum s time of swing depends upon the 1ength of its 1eg?
The simplest assumption, that T 1is directly proportional to £, 1is B,

: _disproved by & minimpm of experiment.- Yet T clear:Ly depends on 2 " so

what is the next simplest conjecture? Let us suppose that . T is proportional '
a

“to some power of £, say £

On what else does T depend? Does it depend on the ass of the bob?
By experiment (keeping 2 constant) we. £ind that provided the bob is heavy,

' thereby keeping air resistance relativeZLv small, it does not matter how heavy.

What else? If there were no ‘gravitational field the pendulum wouJ_d,not -
swing at all, So, suppos.edly undér a uvery weak gravitational ‘-field: it would
swing to and fro ever so slowly. Doesn't it Beeq reasonable to suppose that -
as "g becomes greatem, T becomes smaller? But the dependence nged not be -
simple inverse proportion; s0. let us suppose that T is propoztional to gB, :
where B 1is expected to be negative. . N a'
- Thus we have grounds’ for conjecturings that T is proporl;ional to £ and
but independent of ‘the mess of the bob; i.e., that '

\ :

" to gB

'I‘—czccB

»

v

" Have we taken all the relevant factors into account? Not being able to think

of any others, let us apply the dimensions test to this equation. . |
) Schematically, for the 1ef‘t hand side we of course have St ST

And for the right-hand side? ¢ is a pure number and only affects the amount,' S q

. not- the quality, and so may be ignored. g can be measured in- cm/seca; so

that its dimensions, as we ought to ‘expect from Galileo's work are those of ¥

'a.cceleration, 2, So, schematically, , :

_2 )B' )
2 B)

A a' a
e = 1%

L (L T
.La"'B N T'aB

- . -

which, making fully expiicit that the formula is independent of the mass of

154 - -
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the bOb ‘ ’ L . “a
- cc+f3 O,I,.QE .

< =

Consequently, T and . cg gB ‘have (as stated in the- last. pamgraph of
Nunber 3. 3 1) the same dimensions of length only 1f -

. : _ 0=a+B .
« - and the same dimension of time only if ,
' 1= -28

y . (they a.lready have the same d.imension of mass, O0).
: From the latter equation ' '

B_-E : t

negative as we antidipated, and from the former, !

- . - : 'Ct=.+l . ) <
e , e
glving . : : - R
v _ =1/2 . L
R
i.'e., N . R . N B . . ¢
T Tecgd T _~(17)

Oh yes, our conJecture was daring--yet there was. nothing worse at
V stake ths.n the possibility of being wrong and having to think again.= As it
happens our conjecture vas fortunate. It V,rema.ins to determine the'numeric'_a.l
' value of. c. : . ’ : ST
Many dynamicists of ability tackled with unsuccess the pmblem of a for-'
mula for T. (hlileo came cl’bse to solving it, ¥et never quite ‘succeeded.
Its complete solution demands use of differential equa.tions. Finelly it was. '
deduced with less. than. full rigor by Huygens, his working knowledge of the:
-calculus was not quite adequa.te for a fully. explicit derivation. It tums - S
out that -c = 2r and that the formila is accurate only 1f the oscillations
are small. f It would not do, for example, to have the pendulum swing thmughu
half circles » but when the. pendulum string does not. oscillate more than a
' few degrees from-the vertical the formula is quite accurate, even for scien-

tific purposes. SoJ for small oscillations,

o o

3 3.3 Determination of g by Pendulum Experiment . -
" An explicit formula for’ g 1is imediately. available. ' Squaring (18), =

o ]

: - N
&.T?- b 2

: ""'._'. ~,"4. . ' . o ) . S "
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80 -that’

' g = E'-“F” : \ .(19)_

' . MR ’ ¥
Thus g, (for héTe the subscript of gE in (16) may be dropped. without e
cpnfusion), 80 essentia.l to. the verification of” Newton's ‘theory, may be ob-

_.-tained experimentally by observation of a pendulum‘s period Gr oscillation.

The:. accurate measurement of £ 1is no. problem, but how is T to be mexg--

. ured accumtely? Obviously, to. take, say, one hundredth of the time of one
_hundred complete oscillations is better than to time 8 single oscillation, )

for then the error in timin_g i's, so to speak, dispersed over a hundred indi-

vidual "bse'mtions. And to determine the' bob's return to a former position

) emerimeﬁts, is symmetrical - about At

,3.3.14- ‘I'he Conical Pendulum

it is’ best viewed against the hairline of a ‘belescope. It would not do to .

set the Qn&i:r:li.ne at A (see Fig. 28 again), for air resistance though sma.ll

.do e i ffect o th o illatio 8 that th a b
eshg,___adampngee n esc ns, 80 eygraually eco

smll

'-E‘he obvious position for the hairline is B, ‘along the verticel
through,*t;h -’bob's point of support; for the motion, as we know from Ge.lileo 8

e
e

o =

The determination of T, the period of oscillation of a conica.l pendu-
lum, is & somewhat similar problem to the determination of T for the simple

' .pendulum, but has “the advantage that we can solve it complete]y even with

". position B, of the bob. See Fig. 29,

"the mechanics of the preceding lectures.

_ First what is a conica.l pendulum? The apparatus is ‘that of the simple
pendulum, the distinction lies in the path of the bob If. the bob swings to
and £ro on an arc of a vertical ‘cifele, the pendulum is simple, if it rotates
in a horizontal. circle, the pendulum is conica.l Suppose a bob B to be .

~ suspended from a nail in the ceiling N by a string NB and let C be the

tfoot of the (vertica.l) norma.l in the horizontal plane through thgJ initial



w8 e

Figure29 ) ] i

;Let 'B start irqm re‘st a.nd it will swing to a.nd fro in an arc from Bo of

uel ha.ve 8 simple pendulum.v Alternative.'Lv, give B an a.ppropria.te push :Ln
_the horizonta.l direction perpendicula.r to - B .C and ‘(supposing the string )

in the horizonta.l pla.ne through Bo E A
-eircles C, NB generates ‘the la.teral surfa.ce of 8 cone ; ,the term conical is L
.appropriate; - PN . weooo T
Aq a.lrea.dy mentioned when spea.king of Gelileo, as well as being simple
ﬁthe a.pparatus is inexpensive. Here is another experiment you can perform for
. an :Lnfinitesiml outla.y--provided that you a.lrea.dy ‘have a. roof over your .n"
‘hea.c-l. Moreover, in corrtra.st to ma.ke-your—own-a.tomic-pile experiments 3. there h

3

_.is no risk of burning the house down or blow:Lng ‘the ceiling up; a.lthough no't: ..f
. .

'destructive, instructive. ' . e
Yet even without performing any fire-proof experiments we. a.lrea.dy.know,

_ willy-nilZLv, something of the results by congenita.l mechanics._‘ Suppdse the \

‘.horizonta.l circle of rotation of B to ‘be such that NB 1is i,nclined a.t an .

.a.ngle o to the vertical NG, i. e., such tha.t a is the semi-vertica,l a.ngle

of the cone genera.ted by the string. If o is increased (with the 1eagth of

the string :ana.ria.nt) will T, the time of revolution of the bob increase or .

decrease? Part of the answer we' .can feel with our muscles, the nea.rer B's

.
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uld we get B to rotate in the plane of the ceiling? Can't you feel the

] jituation? ‘No, not quite in the plane of the ceiling. To get B to rotate'
in a plane just beneath the ceiling would require an enormous initial thrust.

.wﬂnon't your muscles ache at the very thought .of it? . And with an enormous ini-

ial thrust B would rotate with enormous yelocity. ‘So? We _conclude that

he nearer qubecomes to 900, the nesrer T becomes'tO"O. T depends'
i.on 'd. ) . ' l “', _
& on what. else does T depend? Consider a limiting case., 1If, in the
B complete absence of a gravitational field B is started on a. horizontal .
'_circular path at the ceiling, it will continue on this path for there is ho
‘ force to pull it down. .. .So shouldn't we expect T to depend on g?
Next guppose that o 1B kept constant and. that £, the length of the
“string NB,  is increased. When £ is_increased, the radius of B's hori-
'zontal_circle of rotation is:increased.' With a short string,.Just anlinch
or two long, would B need a smaller or a greater-push ‘than i{? the string '
.were several feet long? Your musclés tell you that the longer the string,
the greater the force. The greater the force, the greater the velocity. o ,
But there is a complication,~the longer the 8tring, \the greater the circum-
ferénce of the. circle of oscillations So, the farther the bob has to go to
complete an oscillation, the faster it’goes. Does the increase in velocity
sate :or less than compensate for the increase in distanc®?.

ey

, Y

. moremthan co

4

e as’ z 1ncreases, or does it inc ase? What seems unlikely ,:”

ERIC

Aruitoxt provided by Eic:



a

B0 T -
, - ‘ Y

We ‘recall Newbon s argument for central acceleration 80 that B must have
' a. centripeta.l acceleration &, a.nd that according to- Ha.milton s hodograph
_deduction ) )

v, e V2, c ‘ 4
i ) S . o
. . T

. J4(s.

_where v is the initia.l horizontal velocity perpendicular to BOC and

BOC =r, . : - - TS S
) But how is this acceleration caused? g acting verl:icall;r (downwa.rds) »
' has of itself mb ‘horizontal compeqent; there must be a second force._ if N s

is not securely hammered into the, ceiling, it will be wrenched out by the _ '
motion. There is a tension in the string. Thus a is the resultgnt of '
two forces acting on B g Ve'rtically downwards and the 'Lfension in the’

xH

e

string obliquel}r upwards. We -complete the;parallelogram of forces' ' See

© Fig. 30.° cooEEE g )
] . . s - A . N a
X AN
. /('9-]. \ e ‘,
/ 30 A / . l : N Y * L
""u:”;/ i ] \
\ n/ [
- Vdy |
s Iz C /e A
-4 ", )
. b
s * |
» . N °
4 Y "y
Co .
P ' > ) da
R O
g
\':?,. K .\ ) -
. S Figure 3’56 LS
" "From the obvious geometry of ‘Bhe figure BG N'C’ . 8o that-'considering.ithe“'
:. r;[_ght ABN!C' B g .\ "\. -’ o v,-._‘ o7 K . ‘)'Y’I...A“ ~
"‘3‘. o .«'. - tan a= 2,000 L A
L B g - .

. We have related 8 to the geometry ot the figuz'e. - )

A Our problern, remember, 1s to find ..T -~ supposedly in termb’ of-a, £,

_'and g So far, we do not have what' we must haveg-v n eQuation containing o
T, . and we do have what ultima.teiy we mst not- haﬁe --the intrus‘ion of v o
and T, - We must introduce T *and eliminatd v and r. 'Can we kill two-.

birds with one stone? Since the motion is uniform circular motion, 21tr _ ‘

g 15d . L

O
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'
4

being the circumference of the circle of oBcillation of radius r, we have
‘by definition that L
o L V'=‘% .
Do we now have enough equations to find T? The business of solving
problems is so important to mathemt:fcians. and the business of getting into
formulae problems stated in words §0 important to many who are not primarily .
mthemticians (such as engineers and chemists) that it is well worthwhile
%o emphasize by ‘ba.bulation the role of our equations a.nd how we obtained

_them. We tabui&té' R N R T .
[a : . !‘ : B - ' , ‘1,‘ . B N . .
: . > . . & - Y
a=— ‘*,":1 from dynamics: the principal equation
wp s T a PRt I S : L ‘ N
W4t tan a = F by .georpetry of vector-triangle . | -
v=‘2_T_’”‘ by definition. . .

o How many quantities are there? Six, namely, , a, v, r, o,, g, and T. How

6 So ‘that legves four un-
s,namely, &, V, f."', 'and T. Primarily we are interested in. 'I'. ‘I’he

P8y |, V,° and’ r,{ are only means to an end 50 let us-term them auxil:

unknowns 3 their role is to help solve the problem. Yet cha,ra _:erizing,
as ve do have fo.ur unknowns we

ha.Ve only three equations\_ -We need a fourt quation.
. What quantities ought‘ he fourt:‘n ‘equation contain? Tn mathematics,

not in m,e‘t:aphysics ,. 1t is necessary to be clear wha.t you are doing. Again )

. we recal" the 'original problem- ", ' . - : : R _;
» Given’ g, z _h a '_ Find '1‘

_ Note tha’t our ’_ _ove list of six quan'&ities does .not contain E . A’Lthough 2
' is given, it has not been taken. So look at NB in th 30. An obvious
rela.tion involving 4 is .

- . . . ot . ,

We have obtained a fou.rth equation which irLtroduces £ without introducing_
" any new unknowns. Four equations 3 four unknovns the stage is set for the
determination of '1‘ ' - o L
It is my personal opinion that there is nothing of greater import;ance to
" be taught in mathematics to the high school student than th¢ business of
setting up equations. For ‘better or for worse, whether we like. it or not
"we live in a technological society that daily becomes increasingly 80. .
Although you.r typical student will not become a professional mathematician

O
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. d v'{ .__.the nearer his future field of endeavor ‘to science, the greater his need to
I understand textbook.s msnuals, ,journa.ls, and articles :tn which ma.thema.tical .
_.-;fom?ulae are stead:Lly becoming more numerous. And unless he is to rest con- .
__ tent throughout the whole of his life as a non-contributor to his chosen -
. _field, he vill at least need ‘be able to ‘set up similar equations for himself
°It is not “in’the ‘nature of intelligent man to be a spectator to life. 4' ,

4._ " To repeat a point vhose- importance. in nv ‘view Justifies its repetition'
s without getting to‘ understand what a problem is about. and what is releva.nf. .
. to 1%, and (when- approprie.te) translating it from words into formulae s there
is no ma.thema.tical educa‘f?ion. That most of .the word problems in the tra.di-
‘,tional textbook.s are 80 boring and useless does not .;J.nvalids.telny point: ofs

course, the problems must be—i—nte}ligently designed Is it not* signifﬁicant
, that even at a time when technology was att "nding an antenatal clinic

- Newton, Euler, s.nd Descartes each thought t0pic of solving "word* problems
and the setting up:of equations sufficie 1 important to ,justify his author- -

80 .that B

T2= _i « T | ’
. - R A Tgtama TNt
‘ "y ., Finally, from-the fourth equation, . : ’: ' _' E
,.,:. .‘4 ) | . . A , 4 ' T2=L' zsina_

Celving > L e

SR ‘ T 2«‘%- cos:cv%. (20) =

. That (20) is of the form B e
A T V(- T _

" where ,f(a)'=_'_‘}cos o -and is of zero dimensions:confirms cur conjecture.' .

W

» : )




_ A consequence of 20) as a tends to 90°, oy 0
-consequently so does - ‘I‘~~ For the’ bob to rotate in the plane Qf the ceil,i:ng
- itselocity would need be. Infinite. 2% o

perception_ - ‘p B s ¢ R , et R ‘ "j;"
o And the other limiting case? %s“ B tend‘s to O cos a tends to ‘I iy a?nd ; -'- N '
corisequently T tend % 2:t g Thus, morst curiously, when the circle of :

) L, the period is the _same as that of the simple .-‘

\»,_A»,

. 'oétcillation becpmes

Ip endulum,

.In conclus;l.o;r;,- @}g;b
v'._"l'heory. Hex‘e fs '8, - sim'i::le.\“

acceleration for~ mi&m{% cular motion, a limiting case of planetafy motion.

Reconsider the circumstances of Fig. 30 as in Fig. 3l

Figure;3l R

._"I'he force of gra.vity g acting on B may be decom_posed into a force W ‘
acting along NB - and a. force _ BC’ along BC, as is indicated by the paral- oo
lelogram of forces. , The \first co){ponent is utilized in keeping the string' T
‘taut. What about. the’ "spare " force along BC? This provides the centripetal

‘ 'acceleration necessary for'uniform circular motion. _

L IR 'Section 4, Escape Velocity

This section, despite its title, is not about the ra.te of departure of
a convict over the penitentiary wvall. - Our concern is muach more exciting; - - o

namely, »the velocity necessary fo:g; a space capsule to esca.pe ‘the Earth's

a

S | L oL .

O
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gravitatioﬁhl pull.' Although cohvicts have been escapipg from pénitentiaries jﬂ
., for as long as there have’ been §o tentiaries\'
‘within the last few yearsithat tec

__escape from, it As. only

i ogigal; -prjo'gress' ha. madeipo,s"sible: genf
eration: of the extremely high velocities to put satellites into orbit about
. the Earth and to send: rockets to the Moon and to outer space. What was _-,}.*
_;} sciencg.fiction is rapidly becoming fact the other side of the Moon has been
'":photographed. The space race is - supplanting the World Series in public in-gg,a
.. ;- terest we. ’Iive in the. Satellite Age.ur_ L v ‘ l

A

' With ever increasing frequency projectiles are being hurled into Space. o
S Your students, stimulated by newspaper, radio, and television reports, will fa,h

" have eager curiosity to know more, Your better students will ask you better P

: questions, among others, questions bearing on-the relevance of mathematics to '
space travel. The answer ‘o many such questions’is a difficult complex of . )
dif erential equations, but happlly there are Some such topics of NewtOnian ”."
mechanics amenable to elementary treatment An especially amenable topic is

- the: velocity of space capsules,.so let,us consider it._ ,.

latter the velocity necessary to escape from the Earth's gravitationalﬁfield ,;T
to outer space. Alternatively, we may use “the self-explanatory terms go«
around and go-away velocities. See Fig. 32 ’

. . s e
~ .t D 5 IR

Go-around.’ - PO

Y

)

Figure 32

Which: veloc1ty do you suppose the greater" Many persons reply "The golaway{
._ velocity, obviously. Here ' obviously is all too apt to. mean groundless con-
Co viction. You .have grounds for your congecture” Either way you have committed .
yourself the question must be answered. Since the go-around velocity is
. easier to compute, let us deal with it fii?t.'

;—qr . ..,f ) H'.-'f_ | .l
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~3 4.1 GovArounQNVelocity A e e
}. Suppose a satel_'lite in orbit about the Earth, Just skiunning the chimney '. T '
"pots. Not a very realistic supposition *very dangerous for ‘the tre_e tops. "'-_":ﬁ.'.

3 Moreover, although we ‘do not feel the friction of the air when strolli,ng, ; L
--:along, the friction of‘the Eart;‘h's atmosphere is tremendous at high veloci- L
__-'ties and horrib]y complicates our problem. So idealization is impera.tive,

we suppose no atmosphere. Also, that the orbit will be precieely a circle : ,’-"."'.7(.,‘
instead of an. ellipse a,nd that the velocity will be exactly uniform. Now o
.the main idea, of: course, is that the - ;Earth's gravitational attraction must
"mee our’ satellite with a centripetal acceleration. .We recall Hamilton s ‘

' hodograph derivation of centripetal accele?tlon, namely o “ CT S
e - S e =%-' P (11) SRR e S

: What, foi' our present problem, is:: r" Since ‘our sate'llite is skimming the
" roof tops, r 1is the radius of the Earth. And what is-a? a is the aci.
,‘celeration due.to the Earth's gravitational pull. But the strength of this .

_ Pull depends wpon the. distance of our satellite from the Earth. To be pre- .',’

‘cise - ‘a’ 18 the at:celeration due to the Ea.rth at’ the Earth's surface.. To .

K

) _ndnd ourselves of this, a8 in an earlier context, we denote this- accelera-l’ g‘i )
-""tion by gE rather than, g. (E is for Earth and for gnplasis’.-) We have T »
o - | \ o g_E= —;— . v . - .' ;, ) .._ | . I-:.wf .

'(Zi),.'fi-'

300 kilometers above the Earth's surface.‘ At this he;ght 'our satel_lite is *
above the Earth's atmosphere, s0. that friction, ifjany, is negliglble. . We ‘ R
~can’ immediately write Jhat - v300 9 the go-around velocity at 300 kilometers
above the Earth's surface, is given by I - : ’

300 /
3@0 kilometers-*above its surface and r300 the orbit ra:dius ( 300 kilometers B

i.thaﬁ thearaﬂius of. the’ Earth)“'

‘théép

_The problem to find v3oé i 1s re'giuced to
: htion
roblem to find 3300 ‘ ’ e




motions, .

AP 2xr : A ' o
. - L ===,.T = s Lo 3
: 3 - | v 300 V3OO_': e Ve, ;
vhere r ‘v being measured-;m'kilomete'rs. ‘Hence '

) _T3OO.F" v - 2n:r3oo Coe e . o
Coddel, . .
- - v300 Lo r | . ‘
S " ,_-_»T3oo_ v r3’0’0 ’ S S
.._A,‘;'_'” A,t this stage We ma.ke use of Kepler s ’I'hirdlLaw ‘ : e ‘ §

. a . P Y

From this last pair of‘equations, Y
) ' Y300, _r .r'3/2 - S,
oy 3/2 ' .
- , | | R "300
so that *° - o DR o Ve
PR Ve = v (e2) |
S S 3% Y300 o
and from the first of the pair o 3/_2- : S
. ' SN N _{Tan S S
SUETE S S o _< 3roo) | 'I‘: o (23) »
We leave as. an exercise calculation of the go- around velocity -and period }
‘of space‘ capsules in orbit lOO 200, 300 and k kilometers above the Earth's 7_

- gsurface.’ Surely students will be keén to work out in this way the average go~
around velocity and approximate period of a.ny orbits a-ctua]_ly being made s to
compare their answers with the figures public:Ly announced in® newspapers and . N

, ~on'radio and television. o _ B v
' '3.b.2 Apropos Go-Away Velooity . L oo
As aiready remarked the calculation of the go-away velocity is more diffi-f

’ cult.‘. More difficult, because the Earth's gravitational pull. on a rocket head-
ing for outer. space 18 not constant but varies with the rocket's distances from
Earth, The anSWer .depends upon the instantaneous deceleration at every point
of its path from the Earthi's surface to outer space. In calculating the go-

. around velocity V3OO we were able to avoid determination of 8300 ,' in deter--
mining the escape velocity we ca.nnot ‘avold knowing the various ’g's. Yes , the °
problem is more difficult. L S -

I . What 1s. the Earth's gravitational pull at a distance x kilometers from :

€

its center? According to Newton B, Tw of Universal . Gravit/ation ‘the’ pull .




O
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. gives our rocket a8 deceleration inversely propprtional to the squarg of the
distance; i. e., proportional to. 12. Hitherto, we have been concerned with

» 4 80

. the effect of gravty, acceleration or deceleration, it is“bnly indirectly‘ :
that we ha¥e been concerned with its. cause, the force of gravity. In our
nexb problem it is c6nvehient to deal with gravity in terms of the foﬂ:e ;it '
exerts rathér than in terms of the change of velocity it effects. ﬁ.ccord‘ingly

we no\w consider this necessary preliminary. ’ * ‘ e '-,'IJ..,,-QI B
31+3 The Force of Gravity' - BT ' - 7 ’“

- . S e

Tet us suppose ths.t you are weekend cllmbing’fhe mountains of the Moon.
There, as here your rucksa.ck contains spare socks and a pint flask of brandy
-for medicinal gﬁtposes. Although on the Moon,your spare socks are still

.the ‘same ize and the brandy (before the emergency) st111 £i11s the flask,

hs 4

‘each ‘article wedighs less, the Moon S gr,a,vit&tionali»pull is about one-sixtH .*
that of the E.rth's. Whereas pass remains the same, “the force to whioh it

‘ is sub,ﬁcted does not. .The weight of the mass or %substance is the measure’
of the force exerted on it. If on Earth the’ force exerted by gravity on a

pint flask of brandy is 1 pound weight, "on Moon ityweighs about 3 Rpund weight, ks

in.either place two pint flasks of brandy weigh twice as much as one does. If

with the thought thats two would have. fa]_len Just as’ fast. Although, two weigh

xtwice as much as one, although gravitational force exertedson two 35 twice

thﬁexerted on one, the accelerations are the ‘same. A force of 2m . gE L « ‘

acting on a mass 2m- ‘produces in it an acceleration &, as- does a force -
RN - ,acting on’ m, a force 2m - &y acting on a mass 2m produces in it
i an acceleration gM as does a force m o By acting on m, '_ conception L

of forece, mass and acceleration is embod1ed in Newton's Lew .

i~

&
’ ' : force = mass X acceleration., . * (211-)
And wey recall that Kepler's laws are valid for Jupiter's gons as weli
as for the Sun s satellites, 50 that as 'a consequence of his third law th

centripetal acceleration of each of Jupiter's moons towards Jupiter.is in-

- versely proportional to the square of its distance frome Jupiter, just as iR
” (in ‘consequence of Kepler 5 Third Law ) the centripetal acceleration of each

of the S _'s‘ satellites towards thé Sun-is inversely proportione.l to the .
.s,quare.'cz‘n'its distance from the Sun. Likewise, the Moon's centripetal ac- ' o

celeration is inversely proportional to the square of its distance from the
Earth, The moens or satellites of each system each have a centripetal ac-
celeration such that : )
1

centripetal acceleration proportional to _—
. (distance )2

163

when climbing in either place your flask is let slip, you can console yourself :



‘,,The point to note 1is. that whereas c, the constant of proportionality, is-

or - ..- ! o * . . ) . . *
L . . e

e " centripetal_acceleration'=‘ 3
E e — -~ "(aistance)

1the same. for all the moons or satellites of -the same system, it is d1fferent
for different systems. How did Newton get a truly universal law, a law in o ¢
which the. constant of proportionality is the -same for all systems? '

Combination of (24) with . (5). e%ables us to“consider gravity in terms of
the force it exerts instead of 4in terms of the acceleration it causes. Com-
bining these equations, a planet s gravitational pull on its satellite is
dinectly proportional to the satellite s mass and inversely proportional to

. the square of the satellite s distance Let E’ be the force exerted on a

.satellite of mass. m to cause it ‘an. acceleration g at a ﬁistance r from

its attracting body (2&) . - ‘ : . o
; .' o F?m=m("8 l "
~.-and by (5)  * - o -
. . 3 ¢ . . "
. g = —— . Q l '
\ v R P ‘ ;'r2~ b
- 80- that " . e .
. e : m iy
. ; 'Fm‘ c - - o (26)
v . - .. r L I \

.o
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\
. Note well $hat - the attracting force is a function of the mass of the attﬁ:cted

body as well as its distance
o The Moon is attracted by the Earth the Earth is attracted by the Sun
I?is natural, but audacious, to conjecture that every part1cle 1s attractgg
by every otﬁer, that gravitation is universal. But, if particle A attrac
particle B and every particle attracts every other, then also B attractss\
'A;. also A is attracted by A, If every particle attracts every other, \:_
then every- particle is attracted by every other 5\

[

Consider ‘the simplest universe of this kind namely that with Just two _"\\

.particles, say m, m',. distance r apart See T‘ig 33. p T h .\‘
. %‘:,." e . ' i ’
2 —‘ » . ) ’s .
. . m : . | m' . - | '
€ ——— I‘————af-——'l-—> . LA ! ‘\
T —e N '3 l,
5 . ) 5 ’ - /‘ '
6 . F"E‘QE o Fo = c'm! N 'S ..
(] - m " m =3 . .
' r oW r
. . ‘ ' i‘ ' i [ .
¢ , , * .
. ”‘ Figure 33 A
.. "
. : @
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T

. .
.

If m is regarded as a "sdtellite" in the gravitational field of m', then

the force exerted on It is directly proportional to itg. mess m . end.the

- square of its distance from m', i.e.,

jthefforce 'Fm, exerted on it is given by

vhere ¢ 1is a constant of proportionality for
Likewiae, regarding m' as a’ satellite in the

s,

Fm'.‘= 2
. . L, T

S e
where c? ia the constant of proportionality
Which exerts the greater force on tHé otHer9

the simplest conjecture, namely that they are

F ="1«*,—
m ‘m
R - N .
by (26) ’ E
. Im?
F o= o0
. m
:

so that F is directly proportlonal to m'

Fm ie directly proportional .to m and invers

‘m'_ -

y. *

o (26)
m''s gravitational field.
gravitatlonal f1eld of m,.

‘.

. \.

(26)

' . ,159~

for m's gravitational field.‘

It is’ natural first +o make '
the same, But, if

(as well as inversely propor-

' tional to the square of r) But the basis of our argument; (26), is that

ely proportional to the square

of r. What must we conclude? That *Fm is directly proportional to ‘m',

directly proportional to' m, and inversely proportlonal to the square of

.

- r, That. T : .

-

s B

vhere G is a constant of- proportionalityf
But for which gravitational field is G
m'fs?_ Since Fm' = Fﬁ s we may with equal pro
) Gmm 3

CF o= -
Ym? .‘r2

No matter whether we consider the equation as

_field~or as applying to m' s, the constant is

to'everyv(i e, both) field of the universe.

priately termed the universal gravitational co

ey

a constant. - For m's? .Or, for

priety write (27) as

(27 )

applying to m''s gravitational
the same. The constant applles
Being universal, it is appro-

nstant .

the that (27) becomes (26) when. | S

o ¢ = Cm'

P

an.d that (271) becomes ’(26'l) when 1 68

\

RN
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c! = Gm.

" What 1s the signif%é‘ance of these equations? The first states that the con-
.stant of proportionafity for m''s gravitational field is proportional to
m'!; the second, that the .constant of proportionality for m's 1is proportional
to m. Combining these equations ' o

- .’

Cc -C - .
.__‘=__=G, . o
m! n [N :

the constant of proportionality for the gravitational field of a given body
ds proportional to that body's mass. Surely this is precisely in accordance
with our conception of” force, . mass, and accelemtion. A flask of brandy
weighs more at ‘a given distance from the Earth than at the'_ same distance-
'from the Moon because the Farth has greater mass.’ N
Supposedly it is along some such 1ine of thought that Newton arrived at

(27), his Law for: the. Force of Gravitational Attraction‘, from his already *

established hypothfsis that acceleration due to gravity is inversely propor--» ‘

tional to the square of the distance. :"

To be precise, “this law is taken by Newton to hold only for particles of
matter, that is, for bodies whose dimensions ‘are negligible. It is a conse-
-quence of this 1aw-- which Newton had considerabTé difficulty Jn- proving--'

) that the resultant attraction of a uniform. sphere is a8 if the whole of its.

,x mass were concentrated at .its center - So when dealing, .for example, with
_the gravitational attraction of the Eoarth at a distance r from it, we must .

take T as the distance from its center, not its.surface.

3.4.h That Kepler's Third Law is a Consequence of Newton's Iaw of Gravitation

We recall that the crucial step in Newton's formulation of his Law of
’ Universal Gravitation is that an inverse square law of gravitational ‘attrac-

tion is a 'consequence of Kepler's law that the square'of a planet's period -

ST s proportional to the cube of its orbital radius r. We shall now show,

conversely, that Kepler's Third Law is a consequence of Newton's.

With close approximation to the' facts ) we suppOse & planet to move around ]

the Sun with uniform circular motion. Let M and m. be mass of Sun and
planet r the distance between them, and F- the gravitational pull of the
former on the 1atter. . Any letters subsequently introduced are to be given

By

customary in'terpretati n, By Newton's' Law of Gravitation,

i o
S . Gfm - S .
%5 L2 oy T 2 N (27)

', wisince the- moticm’ is unriform circular. motion, the centripetal .acceleration
. 2
wgiven by : 8= ‘ L (11)
Tr_ - : ‘ . '

N )

S . v .




‘ . . _ . o
and by (24), for the centripetal force F, we have

Y

™
[

L0

.

.8

-

ol
L F=m. - ) (28) -

Tt remains to introduce T. Since the motion.is uniform circular motion, by
definition of velocity ° 2 '

. o 2nr

v-&r - (29)

-, our problem'iskto find the relation_between- T and .

'First we eliminate a. From (11) and (28)

. . SRR 2 | o
n - F=anl, . | .
. ’ ) r
Substituting in (27) to eliminate F, we have
: . v2 @
— = "2 .
e oor .
so that By
; . ‘ 2 oM
N R v ===
: 3 . r .
*and m also is eliminated. o
Squariﬁg (29) an® substituting for v2, , ;ﬁ !
. 1‘?‘21'2_9:1
5T R

T .

1

.8

_go.that_: Jl- . f . » . - . x T
P . e (”" ) 3, ~ (30)

EE— is 1ndependent of T and r, -so that
- N

GM
' T2CI r

as-vas to be shown.

The. attentive r?ader will note that this deduction, as that in Number
. 3.3. b to’ determine the period of oscillation of a conical pendulum, readily

'lends itself to detailed. “Word Problem” development:; What is given? What is

to be found? How many equations°

3 h 5 Planetary Mass

' From (30), making GM the subject of the formula, we have
. v.‘ ’ . 3 o L B . 3 P
* ‘> , ’-l-ﬂ . Ez . . (31)

The produce of G and the mess of the Sun M is a function of r -and Ty
the orhital radius and period of a satellite, but 1is 1ndependent of this.
satellite s mass. And of course the formula is equally applicable to any '

o other sun and & satellite of that. sun. Jupiter has moons, 80 .let us apply

»

O
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'dtlto Jupitér and one of its moons., If m 1is the mass of Jupiter and r!

.

11”



r‘;,. . : : e ’ -t . . . . - . ..\
N - I A o R
II‘4 . ) . \'

' and T! the orbital radius and period of a moon of Jupiter, we have
Pt : r' : : - .

. . s o Gm=1+zr . . . _

y . 5 o = . . . g . " L,

o go that - - . 2 T i

. . . . . R .. 514 . _’-—5
@ T

. ) . . .. Gm . h_,tg .r13 .

) 1] ' ! - ‘. V * -.’A . z

J_’ 3. é.‘, v ‘ "‘ ' " .’- - \t . ) . o

- . . BRI ‘. . ‘ N " i., . - . . :ﬁt A . s . ' )

; TS '_f‘ﬂ. s T
Thus, weJan compuge MeJratio of the masses of 'the Sun a,nd Jupiter.. Simi- -
larly, eince the Earth has ‘a moon, the ratio of ‘the Sun s mass to the Earbh'
can be determined, andlconSequently,. ﬁhe relat‘ive masses of Sun, Jupiter, and\

To’ find M, th‘e actual masa of the Sun, (3l) isf of cour,se insuffieient,,
we need to know G From (27), .yhen M !‘ n = l, l, ve. have o
“ . f.,-'. . - w . ._.. "'1,-. ‘, - , } N ‘ . . ‘- ,‘ . o VO o EA ',. j,’ " ‘_ | . B o

.. That s to say tﬁat° G s the gravrtational force exerted by univt mass on
' unit mass a{: unit distance.- So, in principle, G- could be determined by

measuring the force oﬂ'httraction between theae two bi:ts of blackboard chalk. ;
quever, thé‘ force is sq‘ 9ery°small that it is rathéz; impractcal to deter- '_ * . .?'

rec‘ 'I‘aki

P relative veloci'by, it turns out that q
- Ay C )
@ . Q ’ ' . ' T2 =\ f';r
S AT . -
@ . R
( :
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Vool e

, ’ S ¢{ WA T .
-‘That isﬁﬁfsay tn%§§;{u relation between T and r depends not ‘only on the_v

- mess M pf the; also on ms the mass of the attracted satellite. ‘And

just to indicat 5

e

e. have not exhausted the topic of planetary mass, let me
e ark that 1t is.possible to determine the mass of Mars,
"uéven though tﬁey have no satellite moons. It is sufficient
‘h'tal periods to the required degree of precision.

iy - L

o

;the titular topic of Section h . to determine the initial

‘f_e outer space, neVer to return. With inevitable idealization L
S frictional resistance of the Earth's atmosphere. Also, we

and rocket to "be %he ‘only bodies in the universe, so’that the

ing on our rocket is the Earth's gravitational pull. Even with

o "r is far from obvious.

ety y\uui 1ucneL ula 5 off, initial "elocity

_ ' he Earth 's pull and ‘the slower the rate at which our
"-J;ses. Yet its velocity cont1nually d%creases and if it

s gl;@.n it, it would arrive back- at the speed with which it set
¥ol ‘the matter is to determine an 1n1t1al velodity Just suffi- »
melthe effect of the Earth's continuously decreasing gravita- .

«' -
’ u' L

't our minds back to the section on- Galileo. He dealt with the contin&-

R changing in terms of th%‘unchanging. Caricature the continually changing '
A aﬁ"intervals of steadiness punctuated by instan’ca.neous jumps,. then decrea L
&d " :

the intervals and the magnitude of the Jumps until the phenomenon is smoo S
.f"--" "

nm$ out into a gradual continual change. "Recall Galileo's treatment of the con-

4\,‘\
7

‘ inually increasing velocity of free fall. Accordingly we, as Newton, con- . v»:
W ceive of continually decreasing gravitational pull as the limiting- case of '
. ’4?’3§rvals of” steady’pull punctuated by instantaneous -decreases’ of pull.

“How are we to compute the effect of an interval of steady pull on our ...
~ rot et's velo¢itx? What is the’ key concept here? To this we also find the'
' -nanswer in Galileo.' Number 3 1.5, -Conservation of Energy. - There we have

N i : _
T LR F . _ %mve =mg - H. - . ._(7)

f;;,i}l;.h;>{ i;dﬁl o "1 | };15723. .. , - : v;..; “ 'if

Q
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:'Siﬂbe we shall need consider & sequence of n positions'of our departing‘

rocket (as did Galileo of a free-falling body), it is convenient to_denote ‘{““.

164

' %mve, e recall, is the kinetic energy of a mass in’ moving with velocity v

mg 1is.the force exerted by ‘gravity on this mass at the Earth 5 surface, H 1is
the height through which the mass falls. - When the mass m falls a distance H
its loss.in potential enérgy, mg * H, is converted into Rinetic energy, \Emve.

Alternatively put, gravity exerts .a force mg on m over a distance of H in

‘the direction of the force, i e., mg ‘H " is ‘the work done. by gravity. And :

since the free-ﬂalling mass starts from rest its initial velocity, ‘and ‘conse-
'quently, initial kinetic energy, is zero. (7) may be read as

"~

gain in kinetic energy work done in direction of the force.

1”A1ternatively, ccnsidering the sequence of events to occur in the reverse order,
.. so that ‘the mass is thrown up with initial velocity v and work is doné in- the
' 1"opposite direction,. (7) is to be construed as

loss in kinetic energy work done against gravity..

.

Isn't this Just vhat our problem needs tror each 1nterval'of oonstant gravita-'

tional pull? We must add that Newton was' femiliar with the concepts of kinetic
energy and work done, but he was, of course, unfamiliar with the terminology.

Contrariwise, many schoolboys are familiar with the terminology, but not the

LY

concepts, . . : - . _
Let M De the mass of the Earth,-_r, 1te‘radius, and m the mass of'our'
rocket, See Fig. 3&.- B » R o .

*;Figufe_3u; e .
gl.. . : o : _— N,

‘We recall that the grav1tational attraction of a uniform sphere acts as if the

. whole of its mass were concentrated at its center, 'so that the pull F on our

rocket at a. distance x from the Earth's center is, by Newton s Law of Gravi-
tation (27) . . :
1 . y N : ' . CMm : E l"'. e ) a

- 3 3z _ : .

"



ke .’nt'h. ‘vosition ;o/y X, :ead the force exerted on our rocket at that"'PO_int‘ .
S AT ¥ e
~ C / B L n . _

-Also, it is convenient to denote the work done against gravity by our rocket

j'in moving from X, 1 to x __by' N ’ ’

: Since the initial position of our: rocket at blast off is on the Earth'
'5sur‘face, ‘we put Xy = r, and we suppose it to reach a distance R from ' '_
- the Earth's center in the nth_ position, "x (We let it voyage first. to
"R, later to infinity ) Our problem is prim;rily to compute the work done

wn-l n*

g against gravity by our rocket in moving from x=71r to x=R. We gra.ph

' the equation of the force F = GMm .- l'é by plotting the points where ab-
‘scissae are xo, xl, RREY xn and complete inner and outer rectangles in

, relation to these points a8 shown in Fig. 35.

. PR ’.
= m. — --'.
s x’ .
B i Nx .
e =R .._-. o
P, - - _Fiéﬁre 35_"" R
-. -’ 5 What is. -»the work done against gravity by our rocket in moving from xo
to xl, what is WO 1? The . distance £rom "Xy to x5 is (x1 -x ) a.nd .
the-initial force is Fo. If this® remained constant the work done would be o
'F (xl -X ), but we know that the- actual force continuously decreases. ‘ So? . '
» It is clear that S . e : R e
B Yo, <-'_Fb(*1 R

O
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“B .cont,inuo\usly_ decreases from . Fo ‘_ -'4_'_. e least. force .exerted is F, -
and that only ‘for an ingtant. So? " ' :
{.. © ol .‘, »:‘."l‘ 3 5 - R :

N
e

: '_Combining_th’es‘e results, -~ - . ‘
SR “‘.-;\Fl.(x -x)<w <F(x1-x)

..S:'Lmilarly,{we estimate_' _W 2 ;3

oy W

'F-: A. . "lh ~ |
'."‘1)<W <F1(x '-'~xl)'-.

gy 3
S

'-'x)<W (x f-'

'"\,‘.’ o ] S .'b . ' e ..‘.' B 'Fn(};n - ) <W 1 n < Fn-l(xn 'f.. xn-l') o...

Adding, what Q0 we get? . T { . _ y
What is the geometric significance of ‘F. (xl - X )? rI'his is the ares

of the rectangle with base xl X ) circumscribed by the curve

L Feam .S Similarly, Fy(x, - xl) 16 the aréa with base ’ﬁ)
Can LN x

' and height |

o* In short the summation of the left: hand side elements of

: _ our ineq'ualities is the area of” the sequence of rectangles cireumscribed‘ by

R the curve, Let I "be. the area of this inner staircase of n steps. And
‘,'.':'b‘what is the geometric significance of F (JL_L_ - X ) 'I'his is. the area B
: the rectangle with base (xl - x ) -and heigh‘t Fo _ And -F. (x xl)? ¢ :': "
. Similarly, _the right-hand side elements of our. inequalities is the area of
Y the sequence of rectangles circumscribing the curve GMm -§‘ Let 0,
T .be the area of this outer staircase of n steps. Ad,ding, I Heoee i

. In< Wo,l 1’ + w2’3 e s s + Wn-l n <On
o e e (3u)
where W is the total work done against gravity by our. rocket in traveling S :

*i‘rom xO to’ xn’ i. e., in traveling from X =7 ‘to- x =_--R. CE

What happens as n, the number of positions considered, is increased?--- L

'I'he steps become more numerous and inner, and outer staircase more closely

) coincident. Isn't it clear that for sufficiently large the difference .

g ‘;between 0.n vand In becomes arbitrarily 'small? But it is equally evident
Cghat o T e

S o " I\n___<‘ area ~u.nder curve <'Qn‘ " »‘ x(35) '

to R Lo AR N ’ : ¥

—y
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' So.what do You conclude from (311.) a.nd (35)? We must conclude that for )
. suffigiently large n, :

_W and the area under the curve are squeezed arbi-
'.tra.rily close, that

" ". work done against' gravity-= area under_'curve from. r £ R, "Sy-mbolically, o
',The problem to compute W becomes the problem to compute the area under the :
. . L v

curve. T . ' . S !

Reconsider (311.), (35) These are of the pattern ‘ - :

LaT et

The method is to find another X == and squeeze. :
. First to find an X, (311») ig a summa.tion of items such as-
(xl - X ) <W <Fo(xl - xO)' S
- Can we, more modestly, find an X" such that

e F(xl-x)<X <F<xl-x)?

] :
.r

If 80 --ahd if sim1lar :&tems can, be similarly found, there will be nothing left S
todobutadd. - S R S S
What is F ? Remember that we' are dealing with the curve T
. . ’;?'_ L ,' = :?‘_.; N 14 .

(Do not omit the constant is not for General Motors )
By (33) B ~.. S ,_"".' - - . ; "..‘2‘-.’ J, ..; . :
‘ _ w i Fl:f:T_, .;._also . FO ==z _ . e
. o , S b's P Y xS _ ‘
.*So’ . | ‘ - ,..I . ) . " (- S T o .:
,Fli(xl-‘xo)-v-. Q(Xl--x) g,nd F(xl-x)...' (xl-x) X
A i _ 9 SR S

What quantity lies bet,ween them? Not helpful? Well, try’a cha.nge of em-
: phas,}s. We rewrite the right hand sides of. these equations.

* GMm—l-—g—o and GMm
Helpful? Try another cha,nge of emphasis, concentrate
(or on: the dissimilarities) . o

l
i

P 76
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What lies between them? Obviously something of the pattern

'I’he immediate probl'em is to find a. Y such that . o

. O

L3l
: 3

Wga Li x5 S

% ;‘ At this stage ‘one; nends luck and a keen sense “of, what is appropriate . of the_~:.,'g_
: fi,tness of. things. Isn t ‘tfhe followitig a more apt fornrulation? Find a- y

Donbe

é
g
[}
[¢2]
o
- et
%.T
o
%
o
wm.
[}
i<
Q
B
.m'
S
ot
23
I}
=
-

4P “and x2< }, ':."’\ e
‘_}_’ I R v. 0' y"-\. .' o -

' and consequently, since we are» dealing w1th positive quantities,

R o . y<xl and xo'<l_
e, » o » e

- CEesvexa Lo T

These steps are reversible ) so that. any ¥y satisfying the iatter condition

-

CAYL

‘ also meets all the former cdnditions. ST B

Canwe find such a y? We do’lmow - e ) ,

""-“% -~ \,"? xo<xl _ I o
and t.he abundant ot:currence of squares does (whether helpful or not) suggest
i,-'Multiplying ¢this inequality first by xo second _
by xl . we haue T o . IO _:j ._“”.’ E . ,

" _ N . R »0 “ e Y = e ;- BN

"‘1 “and o :"}x <"1'x

introducing xg and,, x

. :I.'.e_., o ‘n

iy

' i_.le'.;"', . y':= ,@o&‘ l or @( meeta our réquirement, (37)

1 ,,is such that

02 ¥, X <x e

. v- . In short, since ~Xq < xl . O

. R
: y : . .
. I o : .
N s W
-. . . ’ .
‘ ’ .‘.-'5 ., . y
. : i
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i -€. such that, with a peculiar emphasis ‘on . xo a.nd xl LT L
F (% - % )<:GMm (xi )< F ( N n[’,
C 10 - o | o 5 2]

"1.e., Buch that l.:”fﬁ'~« - I LT e

: e };F(xl-x)<CMn(—--J-q)<F(x1-'x)

>

[P

o Of_ course ‘we cdn deal with the sequential items simils.r].;r The paﬁ‘tem
is obvious._ All ‘t;old, we have, B T B ;‘ e

¥, (x1 : % ) <(n@r(§% -gxl)<<3'(xi - x )
1
Q%F% &
1

%
A

5

=
a
'—l
IR ATE R
% ;
[}
-

F (" "-fh-i‘) < GMm(sr— - —-) <Fialm
Addins, Ve, have-' S R It S

tayizm(

)i}e;,l »

(38)

' , I < GMm(
Ty 1 . T ATy S
Note how. neatly all the x s other ;than the fi‘rst of the fim‘? difference
a.nd the last of the: last difﬂerence cancelgd out. We are luckier than e’ .
knew.' ' Tt i ‘ R _' SRR
E(;uq‘.tion (38) gives our X- to complete t‘he method it remains %o squeeze ]

_ "and; 0 together._ Since for sufficiently \'l \'r‘ge n, the d,ifference 4
betw!een the area of the inner, circumscribed and ,«the outer,e circumscribing .

’

S

AR

: ', staircase of the curve ‘become arbitrarily small, by (38) we have

Crae . Jr*

.' ..' °‘ ‘. o : ",» ." }
CWES
.Andf s‘ih-&eh;l - - T ‘. . AEIN v
“o. v 7y 1loss An‘kineticenergy = work done agaiﬂst gravity :

.

O
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giving™ e . T P : I
T L1 2 11 I
: T . o RS- “mm<v'£-'fg*)- o : .
N ',~or_-' . ’ ) . . ‘,v _. .‘ . ) ' . . ‘ . R
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.../ . .o . : : ) . ; .1'?“ ‘m

" where v is the initial velocity foryour rocket to reach & point in outer

..4

[

R
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; of but dt the ideas basic ‘to, integration. We

- space- distance R from the Earth's center before beimg pulled back, For

complete escape R must Be infinitely large and

R .zero. So the escape. 2

e

velocity v s given by o T

. - GM
e T,

. -

We have solved our’ problem ] In so.lying it ,

wa)@which really goes right back to Archimedes. To compute the required area

we reaily needed tremendous luck with 1ntegral calculus such problems be-
comeg’ merely routlne--and less: exciting. T hope you will present this methodp_
. to- your. better stud@nts it will pave the way for the mtegral calculus. '—_-' B
Corldentrate on the essential concepts area unde; a curve, successivaly be‘t-‘.- '
ter approximations, an,d the speclfic luC}Q’ mequality. o e
3 h 7 Ratio of Escape and Orbltal Velocities Do v o o . - |
- Which is greater, _the go-awa}’ or the go-ardund velocity? At the begiﬁning
of this sectlon you were asked ‘to commit yourself to ‘an opinion. We' are now
in'a position to determine if you are right.._ N _
'lhe roof-top~orbital~velocity v _1s.g1ven by .- . e e et
. ! . . . v = gE . r!‘.- i A .*. ‘ . (21) —‘ ,.“.
And «m . being-the mass “of "our rocket and M the mass of the Sun, ,by New’uonl‘s :
Law of Gravity, (2’7), we have B R ‘ B
- Yy - 2
. 3 g
i.e. 3 ’ N o b <
B¢ o ! ‘
.’» ; o gE— 2 ° ° :
. - rf - Y .:“/ T ) -
“Substituting in"(21), A
SN I [T -
maw (). L & o
© . ) . o [ * e St e N . -
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.Perfmps i is obvious that the go-avay velocity is greater than the go-around
' -veld’cmy, but it is not obvious that it is V2 ,mmes as gc'reat. '

.1 ) €
. ‘. . ~' - . e et . L ) o
. ' I ’ - ‘ n T e ’ .
i We have seen how Newton, primarily by relating the ngiion of, falling N
N apple, cannon ball, a.nd the Moon to Kepler's Laws, was led to his Lew of 4
" Universal Gra.vitation and 'I’heory of Dyna.mics. ®re not thebLb.niks y Sputriiks y
. and Telstars voyaging overhead a fitting memorial tO, &S well as a vindication
of, ‘his genius? . . . } . ¥ '
[y . : R . M . . ) . . ) . “
: L} i'v : . ' L™ . a . * :
;‘/ ° . @ -
e )
. N . , .
\ \ ! 19 ..
. . " A -
: * L P
. ; - L < e o
? . o .
oo e
- ' ) e S .
$ : . .
A .
' . Ny 8 .
, . ' Y - . |
‘ o .k‘
. <
¢ . ¢ ’ :
N, o , S
: -, C
» e 4~ * K3
v 159 . v
. , ‘ ¥ . X .’ '
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Chapter k- . Physical Reasoning in Mathematics s,

] To. date, what have-we done? First ‘we discussed measurement especially
. in astronomy, t en simple but pervasive topics culled from the’ history of
, statics, dnd fi lly, great discoveries from the ‘history of dynamics - -so
hnny'of which hgak back to the stars.  We haye seen something of- the role -
played by mathematics in the development of science; thét the aim of physics
is to condense ts knowledge into‘mathematical formulae, that, ds Galileo so
delightfully e ressed it, the . book of ﬁature is written in mathematical
characters. ' N .

Yet this viéw, although undeniable, is one sided--or should I.say uni-
‘directiohal’ Qf . course mathematics helps physics. But you must not suppose
that help always flows downstream from mathematics to physics, the river of
thought is tidal. My object in this chapter is to navigate an incoming tide,
to show hov ,help flows also from physics to_mathematics.

- My lecture-room navigation will not be reproduced here as my upstream

voyage is already carefully charted in my Mathematics and Plausible Reasoning,.

v Vol.,:1,.pp. 121- l67, to whlch the 1nterested mariner is directed. -,
."' . - '. . ~ . -

* . : -

»oo a
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tangible reality bytbéﬁng concéptual. fwe;cannotlcope with ‘the full physicalm

'vcomplexity; we must.idealize,. We neglect the minor circumstance of~surface

175

A

vChapter 5 -  Differential Equations and°Their Use in Science

. ~

This, my last chapter, presupposes the rudiments of the calculus and aims
to explain what it .is good fof, It is more. instructive to show than to say

‘ what 1ts’ uses are; saying, no matter how illuminating, cannot be a substitute

forodoing.“mAccordingly, we begin with examples.

':f. - i<u '  Section 1. First Examples . . N
" Lt ﬁ; . ] . . B "

" 5.1.1 Rotating Fluid

One lump ‘of sugar, or two? Cream? We. have all observed a lady taking

: tea._ What happens? The faster she stirs, the higher up “the side of her cup
: the‘téa climbs, If she st1rs too fast she spills; it and ruins an afternoon.

Her teacup contains a problem for- her and a problem for us. Our problem is

amenable to mathematical treatment What is the §urface shape'of»the_rotating

tea? . | B - ?ﬁ ,

. .First consider,afmotionless liquid.~ We have all seen a glass of water
when no>one"is kicking the table. TIts surface looks flat, yet closer examina-
tion shows its surface to be not entirely horlzontal' it curls up ever so
slightly at the edgés, due to surface. ten51on. ‘For water substitute mercury
and surface tension causes prec1se1y the- opposite effect a curling down at

the edges. A phenomenon d1st1nctly visible in a mercury barometer. ~See”

L Figs, l(a) and l(b) o , : o

v

— —— — —_—— — —

R T ' : . : S ISR | )
, Weger . |\T_ T T T 4 C _ T T | Mereury
v . —_——_———— N ! ) : ——.————.‘—_ i .
S i ===
e e/ : . R
~ o O rigure 1fa) . . - - Figure 1(b)

&

LY

~ The_point, nade sp. many tdmes,vis'that.mathematics succeeds in dealing with

: tension, we supppse the surface of a non-rotating fluld to lie wholly in &
’ horizontal plane. : U : .

When a glass of 1liquid i. rotated on a centrifugal machine, what happens?

Water is a oonvenient fluid and is more easily observed if colored At the

'center of the rotating glass the water is depressed ‘at ,the circumference,' . )
'elevated " As- the rate of rotation is increased the water rises higher towards

(3N

ST s

.
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~ A cross section looks roughly as illustrated.'

L e remark'that introduces the notion of surface'of revolution.

: terus, is generated,.~

176

"the rim and sinks lower in the middle, forming a hollow. See Fig. 2.

- Rotational Surface-
_. Static Surface -
. 7 E -

Axis of Rotation

T ‘ . f . Figure 2
(U , _'g""-."».

With g brightly colored liguid
there is no problem to see what it looks 1ike, the problem 18 to. state what
it 1ooks 1ike, to give a mathematical desﬁrlption ‘of the. shape of the rotating

surface, . - ‘ IS C ‘ ot T
A t00“crude’description is to say that the surface shape is hemisﬁherical

If hemispheri-

. cal what would a cross section be? Yes, & semicircle, the same as any other -

" Ccross section, the surface generatig by rotation of a semicircle about its

central radius is a hemisphere, Similarly, the rotation of a circle about" a )

diameter-generates a-sphere. And a most- interésting case, what happens if
a cigcle is rotated about a 1ine which does not intersect it? An anchor- ring,
*wedding ring -- or to be technical rather than nautical or matrimonial -- a

Torus is the Latin for rin g See Fig. 3.

\\



) Qe RS
,any‘ crst éec’cion through . i
ot trace out new éol\}ds they retrace\‘tﬂ‘x% game §ﬁ d

:gy" Qf the sblid-generat;ﬁag
‘ cross section is s'aid to be the meridia.n@f the o ,@a term, when f"ully ‘
'understood, is helpfﬁl 88 well as t.echn; ,Itéf‘g pmw s,..,j.q vealed L
'its origin. ‘Th:}‘Latin"merIdies (medi ‘3? ddle ¥ dies, day), .‘whi became %&
Fhav

: French midi, ‘- means noo“"__,_ The peogife ave’ ‘oon at tﬁe s :Lme ’1ive on' - 'v',/.'&..“ .
e noon curve:or. meriditm., Sa.n Franc‘xscans @d Sea:t%elitgs == or whatever 2
: : . ‘ 100 N Co

Q
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:;:_ !,° Xx-axis will be horizontal. And' what about the Qrigin 07 There remains some»

Y

(a,&'hours earlier, they\ live on a differen‘t merldlan. A meridian 1s any great
,\

\

¥ circle connec ‘g North a,nd South Pdles, a curve that if rotated, gen\"rates ‘-."'-“' DN
the Earth's s
o {\ - - The /upshpt our problem becomes that of finding the equation oT th

. erical surface. ‘I’hus, our usage of meridian.~

‘5 meridian. How are we to do this" Yes, we. begin by 1ntroducing a rectangula
' 71 coﬁrdina‘,:.e system. And where are we to- ptrt the axes of coordinates? LT '
PR natura& to make the y axis the (Vertical) axis of rotation.. Conseque

.chogce.' ‘Eoreseeing that the, s.xis of rotation goes through the center of thé%‘

," ' hollow" it’ would appear convenient to make 0" tﬂis c‘entral pomt::':’Yet .qbserve aé

that ﬁlt’hough ve are, free to put the . y ax1szanywhen,e Ve please a.nd are'*fr)\ee"_'.;‘-.. :\
‘éo pu’t 0 anywhere oﬁf‘the y-axis e p}_ease,\he two %eedoms are’ “°ff‘3*§:s..-. |
ol§e for' o :s. e poin%'

¥ ® 0 éf ﬁhtersection of. the a,x'i_s ‘6f rotation With the Qrigina]\ horizon;ta‘i Surface Ny
-., v o‘I‘ the liquid But what is" an alt\’t:r\xative for the‘y-ax:.s?:. Tme, wé‘;copld ﬁ', -

" ma,ke it the edge of our conta,mer, but is thls a genyine alernatiw’e'? Dg‘éﬁ

A "’it real please\{?s'? Algho éyglcauy possible ’ it is phyijcally abhorrent

: .'I;he re&der who fﬁdds"this point ar:;‘etched lacks feelingt fo;gf wha.t is physi-

- ce‘l fr%orta %Ze inse:s‘t “Fect nglﬂ.?ér axes as illustrated in g 2

§¥ .Our prgdle ta ﬁind. the‘ eguatio'n of the

' .'_ meridia.n f'%lative to thegk. axes ‘6f cb'r.irdinates. M(W'hile this j \

..:.-,: ' 1n-gere,st let‘&ls los%igflt of“o!ur *gre,ater ambi%io”n'.'" I t

lectu;es «a$ ent;ttled b«wxematical Methods in, §ciéﬁce, 'y gur_ ma,jdr B, is to

learn hdw to app%:y mathematics to physics. _"Yet w&&e reflect tﬁﬁt?mh

1o epd, to the li&‘ ofﬁﬁ“ical p‘ro?gr' ameﬁable t"i-ﬂmthematica}.'tréatment @ .

we shgddfer‘ at th \ able prospect of consflde.r :

: rspeak, ¢qually free._{ A\not unnatural altematme chs

as become eve n more specif‘c:,

ereisv.

.them ,one '. ne.’ But

n‘u -

surely we ca;nnot d. up Qur :Ltinerary by dealing with them ‘twa .at a time? :
V, Surely we can do progerly only ong\thing at az\tlme? Ho#r arec?we 'to escape the
:homs of,“xis dilemma.? BY consﬂering txpicai pr@;lema“ And vhat is ‘a typical
. _,probleg? ik : Qypical lvn. so far as the@thod for its,solution will
,_with lit;tlf o oﬁodificeftiiop',"? lép effect ‘solution of many other problems. o
In intelligéntly\,solvmg a specific problem, ve, 1n Iﬁin’ciple, solve 'the’ other
-prob»lemsgw ph ig,’tymlfizes. Although we enter blft onk solution to one problem
"in our exércise *book, if&" f‘ully‘ understan hat we are doing it is gs if ’
.. the follow‘i.ng phg lé?1ad entries ing visible k‘of more or less similar solu- :
:Ltions to more %r 8 similar -!} To ﬁilly gmderstand the- problem in

»

- its w1der context is to see t},e itifzg in coJ’orless ink glow as a’ neon sign. _

Sga NS
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'”iThe'Physical Phase - '3

. . v
Y . T

In addition to solving the problem of the rotating fluid we wish to see

' 'it in a wider context to see it as an application of "Mathematical Methods in
':‘Science". Typically, there are three phases. The first is entirely or almost
‘:'entirely a. matter of phy51cs, the third, a matter of mathematics, and ‘the inter-
%”mediate phase, a transition from physics to mathematics. The~f1rst phase is
the formulation of a physical ‘hypothesis or conjecture, the second, its trang-
"lation into equations, “%he third, their solution, Each phase calls for a f
“'different kind of work and demands a different attitude. To exemplify and.to

,,amplify these remarks we continue with -our problem.

) -

'What are we o f1nd° The equation of the meridian, whose rotaﬂ&on gener-

" ates the required surface of revolution. That much is clear. But what is. to

'~be our starting point° What are the data? Thls would be an appropriate ques-.

. tion if ‘we were dealing with a wholly mathematlcal textbook problem,~physics

- 18 not .50 easy. Physics does not give we only get what we take.

“What are we going to take° It seems natural to begin by noting that what-

‘ever the.shape of the merid1an1?t continues to maintain that shape. That is

to say that every particle of it is in "dynamic equilibrlum « There is no.

movement of a particle up 6r down the curve over its ne1ghbors; vwhatever the

' forces acting in'it they remain invariable. And if they were d1fferent°

shape. The meridian has such-and-such a-shape because the point masd at (x,¥)

With other constant forces supposedly the meridian would have a diff;rent

. on 1t is subjected to such- and-such forces. The shape is condltional on the .. -

forces, To deduce the shape we must spe01§y the condition,- The usual mathe-

matical problem is of the form Given A, find B;. or,. f1nd B conditlonal

upon A Here, we have to .find the appropriate condition A, This is the

physical phase..- ’ L _ ) : o

Condition A, when found, is necessarily of a conjectural or.hypothetical'm

natureu This, especially 1if you already know a little hydrodynamics, may seem :

to be an astonlshlng thing to say. :“But we can never be absolutely certaln

" that we have taken all the relevant factors - even those sufficlent for a _;

f good first approximation to the truth -- into account. Tt is, for example,

pure supposition on our part that surface tension does not become a éritical
factor at high ve1001ties. Having thought of this p01nt we can of ‘course test
ity what we cannot do is allow for factors of which we are. unaware. . And have

we not spoken of a "particle of liquid"? Is this a flgure of speech or daes
PO . 9

a liquid actually consist of‘particles? Ir so, would you recognlze on _you

saw 1t? Or is it that 1magined particles are a convenfent auxiliaryw ol the

§olut10n of physical problems? Although it ii not our purpose here to’ 1nquire
. » :

"‘1~
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'specify this co#

i . . )

g .
into the ultimate constitution of matter, these questions do serve to indicate

. P2
* that familiarity with&a terminology makes it all too easy to equate fancy with
‘ fact. Whatever conditidﬁ A, mt is in principle’ conjectural.

’ LY

¢ So much fér the nature Qﬁ-cpndition A, Our immediate problem is to -
aigidn. Possibly a step, in the right d1rection is to inqulre'
why (neglectingjahrﬂnce tension) the surface of a non-rotating liquid remains
flat.' There islno tenddfiey for a particle to creep ovér its neighboring sur-
face particles. We infer that R, the resultant of the various forces which
act on it due to the pressures of the contiguous parts of ‘the fluid, must be
perpendicular to the surface -- it must be perpendicular‘to the- horizontal

gurface of the fluid at rest to counteract the vert.. _ gmavitational force

: acting on the particle. "But will R still be perpendicular to the surface
- when the 1iquid is rotated vith unifdbrm angular velocity? We know that if the

velocity is kept uniform the surface remains invariant; there is no tendency
for a particle to creep up or down the meridian over its.neighbors., Despite )'f
the liquid's rotation the particles remain stationary relative to one another,
the ‘configuration of the surrounding particles is’ unchanged. So doesn't it

'seem reasonable to suppose th&ﬁ R remalns 15 _perpendicular to. the surface?

What other forces act on a particle P of the meridian besides ‘R? " Yes,.
gravity. ‘And since ‘the particle. rotates with uniform circular motion it must

~have a centripetal acceleration. What:provides th1s.acceleration2 See Fig. 4,

<

.

I\‘A
Wiy
o
3% e
1‘-'27;‘
, '_Centripetal .
§ o \ iforce - '
> Sk NI ‘
. 4
'
' t
" . ,
9’ ° “&
: 3 : : ik
v v g
(4 / ? t
. N
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'Thus we: arrive at the’ desired Condition A . that the centripetal forﬁe
on & particle of the" meridian is the resultant of gravity and

o

Léacting

force R (due

N

to- the pressures of the contiguous fluid) acting perpendicular y;%o he . surface

. of the’fluid. We conjecture that the‘shape of the meridian is deterndned by,
" or is conditional upon, A; This completes the first, the physical phase

The Transition from.Physics to Mathematics ‘ - R

. L C force = mass X geceleration-”

. Provided’ th&w e

second phase may e

word translation is underﬁﬁood in a wide sense, the <
described ag a translation ‘of the physical. hypothesis dis-
covered in the. firs‘ hase-into mathematics Characteristically, the statement -

, ‘that of. the lattér mainly symbolic._ if, however,;!

l a
of the former is mainly Veér

e

£
the investigator s problem lies within‘a field of hi ecial competence, he
may immediat@ly write down the pertinent m&thematicaﬁtions and conditions

In this event it would appear, prima facie, that-his procednre has no- first

.physical phase.' Such is not the case i facility has enabled him to handle both

Phases simultaneously., L » : S : : .-

Our transition vlet m be the mass and v the unifonn cixcular velocity

.of.the particle P at the p01nt (x,y) - on the meridian. What is %he distance

of . P from its ‘axis of rotatidn? Yes, 1ts abscissa  x. Consequently, since

its circular motion s uniform, 1ts centripetal acceleration is. .%:. ‘And since

[ — . .
L4
) -

2 - -
the centripetal fOrce exerted on m "is mi{ and the gravitational force is

_mg Thus, in addition to the directions of all three erces acting at P being
,depicted by Fig: 4, we know the magnitudes of two of them. Mbreover,~by Condi-

tion A, the centripetal force is the resultant of the other two._ So, to depict

4the relations between these three forces we need merely complete the parallelo-

gram- of which a horizontal line from P (wbich represent; the centripetal
force) is a diagonal and a vertical line ffom P (which represents the. gravi-

'tational force) is a side "It is sufficient to remark that PC ﬁnust be- parallel

and - equal to AB We Kave Fig 5 C o _‘“f
r o o ) Lt o

E )

N N L . . L . N N ‘o
f‘: Y . o . ) Cr . . ) . - TS



Figure 5 o <

What next? Our physical hypothesis is that the shape of the meridian is‘h
conditional upon Condition Ay conditional upon the ‘situation depicted in‘Fig. 5.

uHow are we to deduce the equation of the meridian from the depicted circum-

-

stances of . P? It is at least’ clear ‘that we must make use of the geometry of

_-this figure and take into. agcount. the. coordinates of P. But, of the relevant
 items (-—— and mg) only one contains' x and neither contains ¥ PErhaps
" we should console ourselves with: ‘the thought -that half & loaf 1s bgtter than no

bread.‘ Whatever our disconsolations, we must utilize the item E%—, for other-

wise we have no ‘prospect ‘of incorporating b'e in an'equation. Yet on’ second

'thought thisris_not a happy prospect, for with X comes ' m. ﬁt would ‘be- most‘ :

: ‘embarrassing if the shape of the. curve should prove to depend upon the mass of :

The ratio of

'its particles. Embarrassing because mass will’ depend upon size -~ and our Q N

supposition-is that P's dimensions are_negligible. So? While hanging on to. .

-x we must get rid of - m, ' .

t

. How are we to eliminate m? Take another look at Fig ‘5, Consider LAAB?;
T to mg is independent ‘of 'm. Doesn t this suggest that the

- tangent or. cotangent of angle A .ought to be of interest to us? Or, the oppo-

.. N

O
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to the t gent at - P, . ) - x

[y
Rl

site. angles of a parallelogram being equal angle C? Tangent of an angle?

"Wait & minute. Why, or course. We have neglected an important part of Condi-
'_tion A' that R 1is perpendicular to the meridian, that R is perpendicular

' Let us reintroduce ‘the- neglected tangent 1ine of Fig. b, At'the'same*time,
since we- are at liberty to select an"scale we please for the parallelogram of-~
forces, it is convenisnt although not essential to have B (and consequently
C) on: the y-axis. We consider Fig. 6. - e —_— . -

Sy 18‘)' '

)
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Let the tangent to %he meridie.n at P cut the x-axis at an a.ngle T (-r'is the T SO
" Greek_ T and T is for T gent) e.nd meet the y-axis at Q, end le‘t °Qs, B “"Y;
bevpa.rallel to Ox._- It foﬂ.lows that = £8QP = 7. -Since QS Ll Ox, 58 is' P
perpendicu,laz: to the y-axis, ‘and therefore ZSQP is the complement of ZPQC.
, And considering NP ) since PC_LO'_P 2o i‘ also the complement of Z'PCs
" Tt follows that Lo =7, But, o N A
B R I v2 o "
N ‘tanC tan ' T = — v — = — P
. P ! . X . mg xg . s R
" o tmat - | 5 , W
| TS N M ‘
0 4 & * SR TS A .
. Partial success. We have e.n equatlon involving "X. . S S o A
Obviously we would 1like to substitute a function of.” x ‘and Jq for te.n T,
Cen we? Just about the first ‘thing we: leam in the differential c%culus is
" that the first derivative % is the slope Of the tangent’ at the pqmt (x,y)
« to the curve. Y = (x) And since r'r is the angle the te.ngent line b ' .'
. with the x-gxis,- tan 7 1is ite’ slope_’.. T : . Wa?‘ ' ) '-_l; S
) . i ) ] ) v . . . 1 B o ’, - ,-.' . L o
R - A T S . R :

O
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SR R K P 4
181" B ‘\-. ' ,/P’ .5-"_." A &
184 e ; v .
P L 4 ‘;':;3". L t
e , '../ >, -
Consequently, ¥ iy A . -
O S i ST o
Lo T e Ql= 80 T. ... :
T T Y-~ il e
e y . LA - Lt S : L . .
. Hence, by (1), B S s by
T . 4 . “ N e . . s N ”

C e

: a.ppea.rance is prefe:ca.ble to no ppea.rhnce a.t all. .-

* While the one partidle circles about’! 0 from Pl to Pl ,' the, other 'c'ircles

‘ tlese matters.

SR v ax T xg!

'I‘he left-hand side of our equation nov"conta.ins_

ce)

a.nd y, eVen 17 not in the
straightforward way to which we are a.ccustomed ‘in dea.ling with a.lgebraie for-'
mula.e.. Perha.ps we should take comfor{t in ‘the reerctlon that an una.ccustomed

LN

N

Other a.spects of (2) a.lso provide food for th%\ght. . Iet us suppose ou.r-,3

- selves to be looking down upon ‘the’ rpta.ting fluid from way up a.bove the,y-e.xis. E

Wha.t ‘do we: ‘Bee?. Conceptua.lly, We ew the sxi&f;a.c of revolution a.s hosts of
particles rota.ting in circles concentric a.bout 0 (for the axis from directly
"'above a.ppea.rs a.s a point) ALl the pa.rticles in the sa.me horizonta.l plane
revolve with the - sa.me velocity, but the’ highe. the ‘Plene ’ the grea.ter the

' ra.dius of rota.tion X a.nd the greater the velocity V. In other w&ds,. A% is
‘& f‘unction of Xs BLt wha.t is- the rea.l/ly remarka.ble feature? - 'I‘ha.t a.ny two

L
t.

O

pa.rticles on'a meridia.n continue to revolv'e vith the meridia.n. 'I‘hey beha.ve a.s

if they were the tips of clock hands tha.t tu.rn to keep pa.ce with one another. _

See Fig. 7.0 S o ‘ L e ,?.;_. o
o T ! : . : : . R
o = .
9 e .
4 .
L 3
DR : :
- I
s
_§$ u" . - ,
TN B Lo : IR
L e T
( w L e . )n 3 . L. . - ] . . N

»

2
"elocity-, P IR N IR

‘I'he rea}der ma.y reflect tha.t since the a.ccuracy of a clock

o bdepends‘ upon the rateaz of rotét;lon bf ;tsf)ha.nds EMa not their Iengths s

S ‘J-af; o 915"%J'3u LT e e

oo

aboﬁt 0 frcm P2 to P 'I‘he two pa.rticles rota.te with the same angula.r c@v N



, Let us’ suppose that OP = l, OP ‘,- and that' the one particle travels : -;_
along are- PlPl' in unit time with angular velocity,, a) while the other tré.vels' F e ’
alolng ‘arc P2P2' with velocity v. It follows that . _‘ SR e

. arc PlPl 7 PR . 2 2 = v. 4 ‘. IR ‘ i
But, obvious to, intuition - and by 8. theorem of Euclid - these arc lengths ’ 5

are proportional to: their radii. ‘I’hus LT et ks e
L S A Ug_);y_ ' ' Sl ;

Pl * PR
‘ so that | N A Co T T ’
'4-’ A e " . . » : " ST kg
‘ /; . , . =V x, ‘3 4-”'(.34)...-

: It remains to remark that Jsi'nce the clock hand's are synchronous- both particles
have the same angular velocity, so that the pa.rticl‘e wn.th v*city v and
rotationa.l radius X, also has angular velocity w.

Squaring ) agd substituting in ) 2) we have t’hat

And ~what ! are the implications this equation" With u.) constant (g being

. constant, of course) % increases or decreases as x increases or decreases, :
>‘for any stea.dy rate of rotation the surface of the fluid near the y-axis i& '- ‘;‘* . i

flatter, that farther away, steeper.'n And - note that for a given. x, if a.> is ' "
. increased % is increased.' Thus (1#) igxplies\that the faster the lady stirs o :
her tea, the* steeper the sides of the ~hollow beco;ne. If sh,g does not stir, K e
w = 0, the- slope‘*is horizontal and the surface flat.. TheSe implications are- -«’,»
in accordance with the ébvious facts, they af;ord g unds for accepting (h)’ as ': A
‘a correct mathematical° statement of. the conditlon upo wh‘ich the shape of _the .

. meridian depends. But according to (lh) the shape of

e meridian is aIso ERN :
depend&xt upon g. : It implies that, if" g were reduced o ‘one-sixth its ';. L R
. terrestial val,ue the meridian would become six tilnes ‘as s'-eep.- Although we dp . :

- outside our. common experience, we have no reason to suppose at tea is not

.

. St e - .
) - g RPN Y

is helps\ll 6 think ofw .
d be. me' sured+ We R

P

i conclusive. We are disposed to accept (1+) 8s, LCOT “eﬁg

0 " - f._. ‘o

B

O
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take centimeter and second as the units of length and'time; mass is not in--
volved. And do remember that angylar velocity is measured in radians per
unit time. Since a radian is an angle which snbtends unit arc-on a uanit circle,

it, as slope, is the ratio of two lengths; its dimensions are zero.

N - b

ay = slope =B L . =
ax = tan,r = slope = = =L =71 .

so that the left-hand side of (4) has zero dimensions. o ,

X =cm=L,
radian -1 -1 -1 - 2 -2 N i
W=——=—=5sec =T "; @ =T
. sec sec
g = acceleration = —=%= = L. LT-2
2 P2 :
. sec T *
so that : o -
-e 2 -
X + W °é=L°T2°'—l—é=l. i
I < )

Ttschecks. We accept (h) as correct.
‘Our final mathematical statement, spelled out in full iﬁ'that the genera-
ting meridian of a fluid that,rotates with angular velocity w in a gravita-

tional field g is such that any point ‘(x,y) of the meridian satisfies the
conditien SN , o ' ' ' ‘

n
s

EX=UJX A {

x =g . (4)
This completes the second phase. ' * '_‘

Oh yes, we have been a long time arrlving at th1s statement. Hﬂ?vm

were not told to use the notion of merldian we were not told tce think of a .

- liquid as a conglomeratlon of point mass partlcles, we were not given the an-

gular velocity; we 'were not glven the grav1tatlonal field. All these things
we had to,take for ourselves. The problem was to decide what to take. If an
investlgator is clear about the1r relevance at the outset, his work is rout1ne,

he does not have a probleéem,

The Mathematical‘Phase
’ The final phase is esSentially mathematical: to deduce the equation of
the meridian curve from ' ' '
ay wix : |
_x=u)x‘ o (h)
d .

e -

The ‘novelty of th1s equatlon as opposed to our famillar algebralc equations

.is that it contains the dlfferentlal coefflclent & « For this reason mathe-

dx ~
matlcians term it a 'differential equation. We have reached the p: inciple
: S i - A
topic of this chapter. . ~
. 19 :

o . -



The reader may anticipate that since %ﬁ may alternatively be te

first derivative, (4) may alternatively be termed derivative equation.

is never done. The latter terminology would invite confusion for all rquations :

are in a sense derivative =-.from the given, or, as here, the taKen,

with equal propriety, . ' .' o0
5 .

“ dy _ X

. . . . dxe 2
is, for example, to be termed a differential equation., This equat, on contains*®
rder: than
the first. It turns out that the order of the highest derivative involved‘ﬁas '
an important bearing on the solution of tHe equation. According Vs dlstinction
15 made: (4) is sald to be a first ~order differential equation| the Succegking

example, second order, / . R

ent variable y, and the first derlvatlve of

s

v

via e prm‘ em of a rotating fluid. ) N .

Separatfon of the Variablea .
e fi;gt derivative) the result of the differentiation of 'y with respect

X, was written by Leibnitz in the form )

« “
v ]

¢ " dy : o )

T dx

kY ) .
" (other notations are y', v, Dy, D%y). Leibnitz's notation deserves some
: comment%i because it is both extremely useful and dangerous.

Toaay, as the concepts of limit_and defvative are sufficiently clarifie'd,
.o _ | : 'q & : -
K _ R ) . '

- Y
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the use'of‘/izhe/notation~ & need not be dangerous. Yet, the situation was

dx
dii;irenf in the 150 years between the discovery of the calculus by Newton and
nitz and the times of Gauchy. .The derivative gﬁ
rdtio of two "infinitely small quantities", of the "infinitesimals"

1

- d%-

was considered as the
dy and -

Such consideration was helpful: it greatly facilitated the systematiza¥

tion of the rules of the calculus and gave intuitive meaning to its formulas.
Yet this consideratjon wa also obscu¥e -- s0 obscure and nebulous, in fact,
that it brought.mathematijs into disrepute: ~ some of the best minds of the age,
such as the philosopher B rkeley, complained that the calculus is incompre-
MMHR. L \ _ .

It. should be clear today that %ﬁ is the limit of a ratio and emphdti-
cally not the ratio of dy to dx: the full symbol %ﬁ
meaning, but the best is toqconsider its parts dy and dx as devoid of

.the word WORD has a.meaning, but its parts

has a clearly defined

meaning ‘WO and RD have none.
,Once we have realized this sufficiently clearly, we may, under certain

circumstances, treat QX‘ so‘as if it were a ratio: adults

things that children or beginners should not do.

experts may do

For instance)y we may conven-
iently recollect the geo‘etric meaning of QX as slope of the angent‘to the

turve in considerihg the V'irfinitesimal" right triangle with horizontal leg dx

and vertical leg dy. Seq Fig. 8 .

\ . . .
\ ' !
' N \ L <
\\\\ foe .
ay .
" ’ !
: . dx R f 3
‘ :} %;
) “x
- ' : . o Figure 8

N
N .
< ' -

* We may do so if we take such consideration Just as a colloquial "but short -

(althongh somewhat sloppy) expression for a limiting ﬁrocess which wé have once

!

carefully considered and could reproduce if needed. . "

’

Trusting the wisdom of Leibnitz's notation, we treat” QX as if it were

dx .
a ratio ard multiply (4) by dx .to achieve separation of Ehe variables.  We

get . o - |

O
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The left- hand side does not now contain X,

grate immediately:

e

w |

dy = & . xax. fo.

g

REE

<

nor- the riéht‘ y; we can inte-

)

13



. . s , N -'- . .

. T uF - v T )
; dy': — .+ xdx. !

i | :‘ ) ] . -

e a constantgfactor is not affected by integration . ' 3

a ./;y = & -“/;dx. ] . v

differentiate to get x? Yes, lxe. So,,not}forgetting the

; R .2
definite integration, we have '’
‘ : 5 .
: w 12 .
w | } y=g X +C X -
R , ! ‘
//- | N y = U)__ . x2 + €. (8)

By

. Which ¢
that the',

]

”‘gniné different numerical values o C we obtain different‘curvés;
_'1s the required ‘meridian? Recall that we selected our, axes such .
in O 1is at the bottom of‘the/hollow, i.e., such that y = 0

. This is. termed -an initial 9f/; boundary: condition._ These terms

are used bedguse the condition determines the position of the point at vhich
the meridian is initiated or by which the meridian is bounded. - )
Although our problem it not determined by the differential eqhation alone,
establishing this equation is the major, more responsible work. To obtain;it-
we had‘to_probe a complex physical situation to conjecture yhat we termed the
Condition A. To the contrary, the initisl condition'is obvidus and somevhat
-arbitrary. Equation (8) bears testimony that the horizontal plane in which we,
select our x-axis is a matter/of meFely notational” convenience. As"femarked
much earlier, our choice, unlike that of the y-axis being the axis of- rotation,
hés'no physical significance. ‘ '

-

» . S
Applying the initial condition, y = O when x = 0, " to (8), we obtain

w2 . ‘
== . + N . “
- . 0% 07 | :
so that . : . . '
N ) ' C=0 .
a 4-"3‘ . /

an - A

& :

.? . QF o) .

Sy = EE CX.s o

' ~ c : .

The meridian is a parabola; the surface, a paraboloid of revolution. We have.
solved our problem. ’ '
5.1.2 Gelileo: ‘Free Fall > , -

o Our second illustration of the use of differential equations is conven-

v

iently provided by Galileo's problem of free fall.

We introduce a vertical x-axis whose positive direction is downwerds and .
suppose a heavy particle to be let fall from the origin O,V x = 0. As we let'
the particle fall we start our stop watch, & =0, ‘ Thus the'motion is.subject

\,_ e 19@ .

O
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to the'initial condition that v=0 and ‘x =0 when t = 0. How fa s t
. seconds later, will the falling pgrticle be below 0?2 Obviously it can be only
in one place at a time® and so long as it)continues to fall, it will be in

~.different places at different'times. Where depends on when; x is a~function
of t, x = f£(t). Our problem is to specify the function, f£(t). See Fig. 9.

4

| o o(x*= 0, t = Q) /,
A N > AN
) ‘ o - S
“9 - \: L] . » /
+ : . > (
' N \ . : /’
-' " (X,t) \\ '\\ M c/
» : ! . [N
\\‘\ .’ .
° o ;
. K.X ! \‘ \\ ® ‘_-“;“\
. - C ‘
Figure 9 \\\ P .

) Aristotle, among others, noted that the farther, a body falls, the faster
it falls. Galileo, we recall, was insistent upon being more specific and first
made the very natural conJecture that the acquired velocity v is proportional-

v

to the distance fallen x. That is, that
- voMex L, - (9)
where c¢ 1s a constant independent of x.\ Earlier, we remarked that- Galileo
eventually came to. the conclusion that thi conjecture is not merely wrong but
‘ logically -absurd. But as he had no calcul%é he was unable to make his argu-
ment sufficiently articulate to convince others, although doubtlessly clear

enough in *his owh mind to convince himself. ' Here 1s‘opportunity to.present _

i the calculus version. . -
Since the instantaneous velocity v 1is given by?i\\\h. ' Co
) i 5 ‘ : . \—, _d;x_ . . .' N — — \_'.
) . v = dt (10) N
substituting- (10) in (9), we obtain the first-order differential equatibn " R
s 7 . ’ . g - ox - . . . . . i
. 5 at L : : . »
Again, trusting Leibnitz s wisdom, we treat the derivative as a ratio. - - Mutti-
o plying by dt* we have : . . o
r | dx = ex - at.

‘

But birds of a feather should flock together. We divide by .x.’
ax _ c . dt.' i ' o Ce
t X . f. ) N & R .3

The variables are ngw separated. It remains to integrat

. \. c L
¢ . N . .0
2 b N
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are equivalent. With “x. instead of 2, ‘e instead of 10, apd

© you can do it for yourselves. .We.get

N 1

. N ) L. . N
T T —dx [d‘t.ﬂ A
. (RN .

And what do we differentiate "to obtain ‘l? 'Ies i log x.,.So

» . . . i R \
- r N
N : - ° P . M ~

e ‘ e log x = ct + k f"w
\ . o ‘,'. .

R4 [ ] ’ .o
where k ”}s the arbitrary constant of indeflnite integration. But |we waﬁt
a formula “for x, ‘not log'x. It is” &t this stage, convenient to remember
that by definition of logarith the equations o :

" . logiOE - 0.39103,” © 2 =10%:30103 .

. . N
- ‘. by

&

’

* .- “‘ v ol C't+k
X =

But, by the initial condgtions, hen §=0, %3

T g
| o . . 0= 693“‘ - .
Iif x>0 s clearly posiging. If k <O, k'
is positivey . DR - / “
. AR LS W S -
» ! - }'ek{~ positiyve
’ Thus ek 1s neCessarily pos1t1ve.a In short: if the free-fall velocity is . ' -

i proportional to“the d}splacement then

o LN; . ‘O_= a positive number.
' ) -~ s : [ L
Thisg~as'Eucfid=would saY, is absurd. Therefore free-fall vel%city c t be 7
e /

proportlonal to, displacement.
Again we have s problem resolved by a dlfferential equation with !

tial condition., Despite being effected by such a slmﬁle separatioﬁ'of the

variables it is hls@orically important, We are apt to&guppose that - all unten- .

.

able physical theories are eVentually refuted by experiment. This one was. o

N

defeated by logic we have proved Pnat it 1s‘1ncon51stent° o
hGalileo s second though S conjectured that the velocity acquired is
ptoportional to the time talien to acqulre it. That is, that

-

e ¢ ... v = g't - .« . o . (ll)

~

here g 1is 4 constant indépendent of t. ‘ ‘ _
Now substitutiné (lO) n-(11) instead of (9)p we have = . - .

y .
Wb ‘

-

L ';. o ‘
: ; < a€ = ete - _ .
- 1S . o .
We separate the variables by multiplying'by dt ) R !
. . ) - dx =gt - d119 e ) e by
a . . . 8 ’ . “’
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It remains to integrate
v 3

4 .lj- ' . 1-’fdj( = gf'e' « dt .
- .'We get’ ‘ ., ' ’ .
: P ! . A - o ‘ '
! ' . X =3 +C. * -
! 28
'.And since initielly x =0 when t =0 >
; | .- : :
P i A S . .
o u[ 0—23 O+c . o
so that. | }- - .
. Y . . 7 -~ °
: o e d
. _ ! Y
and . - | ’ : - : ““
< Y Bl 12 . ‘
f 2@

This is a useful proposition of physics., Reflection ugon the contrast
between its derivation here and Galileo's {cf. Number 3 1.3) is r warding. By
effecting solutions without having to think what we’ are really doing we gain a

¥

lot -- and can lose e lot. - ’ ey \

5.1.3 Catenary
Catenagx is derived from the Latin catena meaning chain, and is used as
: a technical term for the curve formed by a uniform chain henging freely from
Q\

two points not in the Same vertical line. Our problem is, to specify the shape
of the catenary: to determine its equation. With one point’ of support verti-

cally below the other there 1s no catenary and no problem; the shape is obvious.v

bR

J When I was young the well -situated gentleman was wont to indicate his

. opulence -- not to mention emphasis-of his corpulence -- by sporting a -golden'
watch chain across .a wide expanse of waistcoat. 'Eut'even if golden chains
and waistcoats were still.with us this would not be sufficient reason to consi-.
‘der the c:atenary.f In this technological age, suspension bridges, telegraph
wires, and high-tension cables dingay some important catenaries. Unless the .
.strength of steel has recently been increased it is4still the case that a
steel cable catenary six ‘miles long would~break und ‘;its own weight. éee
Fig. 10. U

¢

Figure lO : . o

oo ' - J‘ .2 : :
R
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Obviously the supports at A and A' do much more than take the weight of
the cable. Recall the exertion needed to take up some of the "slack" of a

- sagging clotheslline. Many engineers spend much 'of their working lives calcu-

1ating tensions inwires and cables, particularly the magnitude and direction
of the ‘pulls :t\the pointskof suiport. The effect of contact with a falling
high tension cable- is apt £6" be permanent as well as(instantaneous.

Not all_freely suspended wires hang in catenaries. The word chain in the
above definition 1is dsed to impiy strength and flexibility. We think of a
chain not rusted at the links. ideally 14 does not stretch and is free to
swivel at its linkages; ‘1t is inextensible and offers no resistance to bending.
And the word uniform implies that 1t is made of homogeneous | material that its

welght per unit length is the same throughout. The more nearly a suSpended

wire, cable, or chain is flexible, 1nextensib1e, and homogeneous the closer

fa rota{ing fluid\dt 1s tempting althtugh not essential to put it at't

w11l becom@ apparent later., We have the 51tuat10n depicted by Figill.

its shape approximates a catenary. 7 : - L . e

' We consider a perfect chain suspended from two, supports in*the same hori-.
zomtal plane. (The case ‘where the supports are not in the sameyhbnizontal‘

plane'will be considered subsequently ) Does it hang lopsidedly? If so,

to which support 1s the bottom of the curve nearer? The left or the right?
Yes, we have encountered the Law of Sufficient Reason before. Tt w1ll hang
symmetrical}y with respect to the vertical equidistant between its supports.
It is ngtural to take this vertical as the y axis, -And the xtaxis? for

of the ¢ e. I prefer t6 put it an arbltrary distance belowy my rea

i o .
. - . ' . . s
T " Figufe 11 -\ o .
. : - ' . \'_
] (4 . 0 : . .
. _ . N S : . \
/ . - : _
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Our problem is to detennine the equation of the catenary, »y = f(x), relative
- to our selected rectangular coordinate axes. . ' '
S The first, physical phase. is difficult. Although it is cledr what we are
' to find what we are to take as given is far from evident. Rereading the
definition of catenary we note that the chain is uniform. We take this to im-
- ply that it is made'of homogeneous material, so that it has constant weight
per'unit volume. Yet on second thoughts).uniform chain implies more than Y
this: a chain with hefty links at one end and slender ones at the other, or
& cable thick at one end and thin at the other, would not be* described as
© uniform eVen if made of homogeneous material, Additionally, it implies unifonn,
cross section. every part of the chain has the same weight per unit length..

Idealized, with cross section shrinking until the chain becomes a line, this
' amounts to saying that .it s constant linear density. As is customary we
. -take this density to be »-. tl is the Greek L and L stands for QEEEE_ )
* Is this sufficient, or do we need provide ourselves with additional data?
. . If a chain has linear density A, 1t has it no matter what its ihape. It
~would still have this density while being cracked like a whip., But it is not -
being cracked like a whip; it }ant moving at all: 1t is in equilibrium.. We
conjecture that the condition that a cHain has density A and is in‘equilib;
rium ishsufficient to determine’-its. shape. Or, not to do violence to the
English language, we may reformulate ouztproblem: Given that a perfect chain
of density A is.in equilibrium, find its shape. It is of'course understood

that the answer is to be given relative to our selected coordinate system. .
- The second;}nansitiOnal phase is the transiation of our conjectured .
- condition, "equilibrium, into mathematics. -We anticipate ending up with a
‘differential equation with.an initial condition, . o
anind s@me cotton’frqm a cotton reel and pull. The unwougd cotton is
" tangential to the reel, isn't:it? Unwind soms very heavy cable-from a drum -
and pull. The unwolnd cable need not be tangential; its resistance to bending
‘may - be "too much for your‘strgngth. A perfect_chain is perfectly flexible. "We .
conclude that the -tension in the chain 1is -everywhere tangential to- it.
A Partial corroboration of this conclus10n is given by consideration of the
forces acting 4t B, the bottom of the curve, The crux of the matter is that
) B is symmetrically placed with respect to the left- and right -hand portions
Gf the eurve, so that no matter What“%orces are exgrted on it by the jone
.portion, symmetrically identical forces dre exerted on it by the other. Since
H %tands for.Horizontal and V for Vertical let us suppose H to be the .

horizontal and V the vertical 9upuard) component of ‘the pull exerted on B

201
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by either portion. .See Fig. 12,
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The symmetry is such'the horizontal compOnents H are equal but opposite;
eath annuls the effect of the other.\ Contrariwise, the symmetry is such that

the vé?bical components v have a resultant 2V, For equilibrium 2V

‘must be anrulled by the” weight of the particle at B. What 1s its weight?

Since ‘the chain weighs A per unit length, the smaller the length of the .

-:particle, the less its yeight. But isn't 1t singularly odd to speak of the
“length of a particle? Arbitrarily short, it weighs arbitrarily little, 50
that 2V, andlconsequently vV, 1is, arbitrarily small, With an ideal particle

1t follows that V =.0; the only foroe exerted by either portion of. the chain.
is horizontal.. But, the tangent at B is horizontal. We again conclude '

that the tension-at B 1is tangential. If you sever the chain at B, in
~ what direction must‘you pull to maintain BA :inaequilibrium? Surely your

muscles give you the same answer. : -4

Progress ha;\been made: we are agreed that" if the chain is. in equilib-
rium, the tension is everywhere tangential to 1t. Thus,\in particular, the -

- equilibrium of BA. is effected by a horizontal pull H at B and a pull

T (say) at A tangential to the chain. What other forces. act upon it? i :
Yes, only its weight. Each tiny portion of the chain is subjected by gravity
to a_downward pull proportional to 1ts length. Yet we do hot need consider
these forces individually, their combined effect is just as 1if the whole
weight W of the chain BA were concentrated at a certain point (somewhere
in the plane Qf, but not necessarily on, the chain)s And what is this point
called? 'Yesa the center of gravity. So BA may be regarded as in equilib-
rium under the action of three forces, H T, and’ W, It follows<that the
force W . must be equal ‘and opposite to the resultant of the other two, and
that the lines of actdon of these forces must be concurrent. Let them meet

\ ,» : 20%. e
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“that we are now abli 40 describe the shape’ of the curve. Our deBcription is: ¢
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: st C. /}5;7 is for Concurrent) See Fig. 13. -

©

o .
-~ _
. * i . . . » A \
‘¢ 2 .
) S R )
: i . s 1
\ | ,
\. Al
\ : ,\\\ [
\\ N - ~ | Bl ) x
. v H™= ‘ -
a :
v ‘\‘ ’ ' : .
\ o
\
N v Y
\ . o o . '
\ . D B _ —
| co - Figure 13 ’

~

- Think about thie situation. With a little thought it becdmes cleén

LN

no .matter where. the point A( ,y) mey be, the equation of BA -is- such that
the line through the center of gravity of BA, parallel to'the y-axXis, pgsses.

_ thrdngh C the point of intersection of the tangent at A and the line

Q ’_____,__—-
through B~ perpendicular to the y-axis. Can we obtain a differential equation-
fTom this? Not very inviting, is it? Well, perhaps there is a more amenable -

.description. Iet's try again. ' : . AP

v

Instead-of starting from the fact that the lines of action of H, T,
and W are_concurrent? let us begin with the factlthat these three;forces 'Jf
are in equilibrium, A It follows that lineefrepresenting them in magnitude ee
well as giréctiqn will form a closed veetor triangle. Qonsider Fig. 1k,

*
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. As in our firs éxaﬁple, taking . to ‘be the angle'madé by the tangent line '
. . 3 - . - . | 2.

with the x-exis; we have immediately that .. o
. g W
$. . .' k.t‘a_n.'r;=ﬁ. .
And agein using S o ' \'
‘ ‘ ' | ) ﬁ. ‘%i =ten T
- . . . - . :
we.obtain o T o
' w0
\ dx H

Is (12) a- differentia.l equation? - The snag is that although H is con- ¢

S§aht, W -is not., W depends upon the length s of the chain frOm aB to

A(‘x)y.)° .
o ) - ) W=2A-58.

- Our next task is to relate s to the coordinates of -A. The required formla
is. & téxtbook commsnplace; but perhaps‘you have fbrgottén it.
T shall derive 4t for you. My method will be the "nine-to-one" method.

Just 1n'&ase,”
No, _‘

"mno, T do not mean it will take me four hours; I mean that T shall use nine

- parts intuition to  one part 1ogic..
_ Consider Figs. ls(a), 15(b)

O
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Figure 15(a) ' Figure 15(b)

A )

»

48 P moves along the curve towards O 'the slope of ‘the secant OP more
closely approxihates to that of the tangent line 0Q,
: | | tim .= D (y)°
x=0 .
It %s tempting to us as to. Newton to describe Dx(y) as the ultimate ratio --
thereby covering up a multitude of logical sins -- and to Jjoin Leibnitz in

writing it as % . (viz., dy. divided by dx). The notation

Lim %g = %ﬁ . s
x—~0 ,
alds and abets intuition. Both notétion and diagrams tempt us to assert fhat
when the secént reaches its limiting position, P coincides withv Q, o&x- ’
" becomes dx, &y becomes dy, and the straight line eienent Ja':] bébomes ds,
the infinitésimal bit of the curve coincident withlits tangeht line. Let us
not resist temptation. ‘ ’ . .
To find " s, the length of ;BA, we must evaluate ulés from B to A,
QS, we obsérve, isvbhe hypbtenuge of a (right) triangle with legs. dx, dy.

Bringing Pythagdras'tg our assistance,

' as)? = (ax)? + (ay) .
" 80 that . - - '
L o as = V(@) + (ay)? (1)

' This implies integrating J(dx)? + (dy)° from B to A, but to write
A .
N2 2 o
. j R o
. B ’
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q1s fd demand integration with total disrespect to both- x and y. Very rude.
Since x 1is the independent variable of ‘the hard s’ogght y = f(x) our pre-
ference is to integrate with respect to X. We mu...,.‘introd,ucea dx. From
(14) ' -

: ;‘/(;)2 : 31 ;%)Li g =V’~; .'@)2.-"’/(@)2-; J; T

. In movingvalong‘ the curve from 3B to A “the abscissa changes from O to X,

go .that '& \
A’ , 2
s ='fB ds =f: 1+ (%) . dx. - (15)

We .h.ave the textbook. formula.
Substituting (15) in (13)

. , 2 ' .
. . . X gx
' W 7\J. 1% (dx) o dx :

0 i : -

go that (12) becomes - o ' .

- %%Jomu e

At long last we have a differentisl equation. Indeed we have much more-than

s

we bargained for certainly differential, it also contains an integral, Of

a higher, more formidable kind, respect for its exalted rank entitles it
.

\

integro-differential equation. Oh yes, the wonderful name does exist. And

-

behind the name‘there exists, even more impressive, a theory. A theory whose
intricacies we can happily escape by transforming (16) into a differential
equation of the‘morevpedestrian non-integro kind. To do this we must review
a most impdrtant notion. .
In studying Galileo's deliberations we were informally introduced to
the notion oi.the area under a curve as,the 1imit of an inner or outer stair-
case of rectangular steps. The shorter the tread (breadth of step) becomes,
the more snugly the staircase fits the curve, the more nearly coincident areas
“under curve and gtaircase become., By making the tread sufficiently short (and
' consequently, of course,. the steps more numerous ) the -difference between these
areas becomes arbitrarily small. This consideration has led mathematicians
to agree to define the area under the curve 'y = ¢(x) from a to x, say
A(x), by X ,
m 2 o(x) - Can
.Axﬂo a .

[The typical step has a rise (height) ¢(x) and tread (breadth) Ax  and
)

consequently is a rectangle of area ®(x) * Ax. It follows that the area under

206
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the st'airca_se is the sum of the areas_%f all such steps from ‘a - to %, 1.e.;

g ! . Lk
) X Y . ’ . .
Z ¢(x) . A%, .
. "~ The area under the curve is taken to be the limiting sum as the treads become
' _indefinitely short (a.nd the steps more numerous) 1.

- A logical consequence is that - o ' N

Lim-—Lz-dJ(x - a - (8)
“Ax=+0 & C, '
The proof is difficult it dema.ndg a more formal :Lntroduction to 1imits than
given earlier. But fortunately Leibnitz's notation makes this consequenCe
* ., aquite intuitive. For

& s

x o
) - Lim E o(x) - " he writes f B(x) o ax "
. N0 8 0 -

-

SA(x) he writes d‘Ad;) .

and for Lim
. Ax~0

Thus the translation of (17), (18) gives:

a

it A(x) er o(x) * ‘dx

then.: %ﬁ = ¢(x). ) E (19)

et us consider these equations intuitively. See Figs. 16(a), 16(b).

o ) 'y = &(x) y

A N A A

] ! . |

' |

N - /

: . % ®(x) [

| / ] 5
o= S /e . i

- — a T - a .
. > e —
+ X X .
Flgure 16(a) _' Figure 16{b)

'
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With the usual usaege of the A. notation we suppose MA(x) to be the incre-

ment of area under the curve corresponding to an increment of base Ax, Then,

Alx) = o(x) ;

the approximation becoming the closer, the shorter Ax. Now it is intuitively

- tempting to suppose that “ultimately the treads Ax become 'so short that areas

under curve: and staircase coincide exactly. Suppose this to happen and let”

dx be the value of Ix for which it happens. Leitnitz terms -dx the
differential of x. - Then dA(x) denotes the incremen* of area under the
curve corresponding to an increment of base dx. But since areas under curvé

anhd staircase are perfectly coincident so are the ereas of common base dx,

so that o L \
dA(x) = o(x) + dx ,
~end )
_d'_g_}(cﬁ:= ¢(X)

" Also, intuitively, A(x) is the sum of the infinltely many steps, from a to

x, of which ¢(x) dx is typicel, iied,

o A(x)’=¥§: .¢(x) . dx ~

™

.}F, the elongated 0ld-English S, 1s used for Sum in contradistinction to the

. usual 2:, to emphasize thet an infinite number of elements are involved.

So much for intuition. Iet us apply (19) to (16). 1Instead of A(x)

we have %ﬁ and instead of o(x), * T

dx dx
i.e., - ‘ . .
4 . 2 2 .
. g4§= % 1+ (%Z) . ' (20) '
. ax X .

: 4
! 2

. ) N 2
'This equation contains & gna. g—% but no derivative of higher order than

dx

_ the second, so that it is a second-crder differentiel equation and is charac-

terized (strictly speaking, after transposition) by the general pattern

A 2 .
. ! d
| 7o ) -0

208
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And although choioe of| the x-

condition: at B, no matter what its ordinate, the curve ‘is horizontal,

W_hér.l-X=og .

a

Eoes it° Let  us apply the dimensions test. In an earlier application we

that schematically

so that

%ﬁ being of zero dimensions

N~

axis was left open we nevertheless have an ini ’al

- r~u .
N .
P

’
..

-

w
-~
=

A

) . . "-q"..,_- ’ .
a ay) - A
_ _d‘l’ _ 1 _l_. . o 1o
' Tem LT : : ' :

(a pure number), a bit of N fe.,"a &~ i8
’ _ s .

dx’ dx ?

also of zero dimensions (a pure number), Considering the right-hand side of

.. 2 - L
(20),. since (%ﬁ) is a pure number, <%§> is a pure number, and so, conse-

dx

quently, is Y1 + <g¥> . And, schematically,

A _"linear dens1ty cm 1

H

So, the right-hand side also
test. '
. Finally, for brevity, it

coe

- tension m

-0

gm
has dimensions %' Our equation has passed itsg"

is oonvenient to put

Al
H a

where a 1s b length, so that (20) becomes

S A - R B

This completes the second, transitional phase.

o

The third mathematical phase is to solve (21). ‘This equation is a very

. special case of the second order for it contains neither x nor Y. 'just

the first derivative and the derivative of the first derivative. This very

' special feature enables us to

to reduce it to a first-order

will seldon succeed,

Let P =L, then

&y
, dx2

do what can be done irr a few.more genersl cases:

differential equation. You can always try; you

e el ———
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- svand (21) is reduced to the first -grder equation

o LR i
. o . d.x—a. 1+P° - ' .‘

N What are we to do next? Separate the variables, ~of course.

«

_-ff—(il)—-=%fdx. voo(e2) .
- q 1+ pe‘_ - S
And what do we differentiate with respect to p to get = 7

— 1
. d]_+p2.

Yes, an answer you should: know by heart, 1oge(p + §1 + p2) We had.better
have a; check-up for those with weak hearts: ;

Consequently, (22) gives .

) af . . T
S d ’ 2T 1 oa ’ 2
~. . ' dp;loge(pf 1 +p )z -‘ — — 'dp(P.+ '1+‘Pj
: : p+yl+p o
. ‘\ . . . . .
but ! N ‘ 4
Y [+ 2 ea o/ f ‘
dp(.p+ l+p>—kl'+dpg(l+p) E
L1, 2afera ds 2y 1,0 2v-1/2 '
) L= 1‘+2(1+p). _ dI__)(l"'+P)' _‘1+2(1:+p) 2p
T ‘ —1ﬁ. P p+d1‘+ﬁ" B
: ~ = 1x(1+p) Taep o= 1A = .2 |
. . . . , Jl+p2 i 1+_p2
so that E . _ PR e
' d . " e N 1 -+ V1+ 2 - 1
. =—1log (p+ 1 +0p = - : i, R D _ - ;
dp (- e . : T > - 0. g )
- p+4yl+p 1+p ' 1L+p >

U : o , o ’ \3
. \ loge(p+Jl+P2) ‘=.é+c., e | .

USing P = %;

7." '.j log, (%Yx +. 1441(%))‘_ —§-+C.

Uéing fh_e initial condition that %}Xc =0 when X = 0,
e v ‘1og(o+4.1.+02>=9+c
oo : . . e . . a o

Ll N

Lo S logl = C

O
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80 that oo
o o= C ' o _—
and D - S -‘ : o
g | & Cfa)®) oz o)
loge<dx,+1 1+ (3% =& (23) '
£ . ’ : )
. : ' - 0.30103 o L
Recalling that logloz = 0,30103, 2 =10 . we analogously transform

(23) and obtain ' Y

N

The next step 1s to get rid of the radical

2 s
A R i
YA
. S'quaring, . .
2 2
’ : &) | 2xfa_ ,x/a &y, (&
- 1 (dx = el e ax * \ax) |
. R | .
so that ‘ : Y
' . 2ex/a.%vx, e2x/a_l
2x/a ‘
r g = — l
dx 2eX/8
. glving finally \ d

a first-order differential equation. Solve this and we have' effec;ted the

solution of a secon‘d.-order differential equation by solving successively two
first-order equations. ".. - . ¢

Separating the variables s it remains to integrate v

Sinc; the derivative of ae ox/e is -ex/a' and the derivative of ae-x/a is
=x/8a . . .

¥y .—).-]=aex/a + !'ae-x/a_+ ct.

l oy
;@:’ ,ll" .8
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.. When _,x. _—; 0.’ , <v . S . . ‘ )
, ¥ = %A(eq + e'o) +Co= ;a(l +1)+C' = a+C' Co
The simplest equation available to us is given By 'C' = Uy taking Yy to

\

be equal, to a when x = ,0.  Thus is most convenient to heve the origin

a  units below B, whereupon the equation of the catenary, the shape of a -

unifofm chain hanging freely," is

S o x/a -x/a -
| BEALEE e o SR

. There remains one point to complete the solution: . we have congidered the
shape of a uniform chain hanging freely from two supports A, A'7 in thé seme:
horizontal plane. What happens in an asymmetrical .case where A, A' are at

different levels and B "no longer lies on an axis of symmetry?  If the curve

~ has a minimum point B, the bottom of a hollow, it still follows that H the

short that it has no bottom-of-a-hollow point B. Consider

3.1 4 Fall with Friction

tension at B 1is horizontal, go that the rest follows as before, despite
asymmetry. ) ) C . :

There is an alternative argument which holds even 1f the chain is so .
gs. 17(a), 17(b)

B

Figure.l7(a) . , _ Figure l7(b).
Suppose the particla of chain at C to be. replaced by two adjacent supports
at C, C'. These supports supply the tensions T ghich the particle at C
had supplied. .Conéequently the .equilibrium and therefore the shape of curve
A'C and curve CBA are unchanged, ‘Since C is an arbitrary point,.(2§)
covers all possible'cases. S

There is some analogy between learning how to. sBolve problems of science
by methematics and learning a foreign language: an analogy close enough to
merit remark, - Consider the English-speaking’perSOn who ‘décides to learn
French, At first our would-be linguist has to do all his thinking in English;
having decided what he wishes to say, he hes to wrestle.with the problem of

w 212
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. ] .
translating his Eﬁglish into Frengh Later, with increased facibdty, he 1s
J
often able to reply in French to a question asked in French without inter-  «
medialy'translation of *the question into English amt his ansver to it into

French. Finally, glven ability amiz%rseverance, he seldom.if ever needs to

. fall back on his English; he thinks n Frénch. Somewhat analogously, with

‘ scientific problems, given mathematical facility, there is ng need for prior
painstaking formulation in English of the physical’ condition, it can be ex- |

pressed in nathematical notation directly. Phases 1 and 2 may go forward

as the ;animals went into the Ark, paired they ndkd not march in single file.

. our next problem is to specify the motion of a body let fall from rest in
a~resisting medium,'for example, that of a stone when air resistance is taken
into account. -Let us ‘deal con301ntly with a coﬁjecture of physicai condition
and its mathematical formulation; we have the facility. .

.We consider the fall of a particle of mass mm. To proyide a convenient
frame of reference for our observations we Introduce an x-axis vertically.
downwards such that the particle is let fall from the orig1n when we start
our stop watch, »Thus in addition to.the initial condition .given by our:co-
ordinate system that x = O when t = O,k we 8150 have a physical condition,'
gf = 0. Obviously, the position of the falling particle is dependent upon the
time for which it has been falling;.‘x depends upon t, say’y x =4f(t). Our
problen is to specify f(t). See Fig. 4.8. '

. - : - ax . :
v . . ?(O}O) dt =0 .

. "x

» Figure 18
Our difficulty is to conJecture the condition upon which the motion de-
pends. Since : . ) ‘

mass X acceleration = force

a stone of mass m falling under gravity, without friction, satisfies the"

condition

W . : o ‘23;1:}



- What modification does a%p“ﬂhsistance introduce? Not only is the,problem
Cdifficllt “for us,” 1t is by #nd ‘large ‘an unsolved problem., Khowledge of °
friction-has little theoretical foundation. However, we all know ag a matter
of crude observation that frictioﬂF’pposes the*motion. So, if" R fs the - 1
frictional force opposfng the motion of our panticle m, we have

(S 2 ' i

= mg - R.
at” ol

1o
rolx

=}

.
-

On what does” R depend? It has been found experimentally that ‘R in- .

creases. as the velocity v of the falling body increases. The simple assump-
tion that R ' is directly proportional t3 v turns out to be too small an

estimate; the,assumption that R is proportional tos v2, too large. Although\ o

wrong, the latter more closely fits the facts. Thus a better assumption would

appear.to be that R is proportional to v¥ where 1<a <2, In consequence,

the 'condition for the motion is
B Y

o
o

"

= mg - Kv? el

v - ' : .
v . .% .

where the constant of proportionality K is positive. The best empir cal
value ofA o 1is about 1.71. It is not theoretically conclusive. .
To obtain a differential. equation amenable to simple treatment we- shall

take a to be 1. And since v = dx we have

,,,,
%
n

at’ . ,
. ’ ' ' mo.é-mg-Kd._".( .\' . 7
l N .: ‘ dt2 . at’, i ]
Dividing by m | : 4 -;ﬁ
. N - .-i . T -~
5 - &, kx
dt2 'mdt- ¢
For brevity, we put \% =k, a positive number, so?that the condition for the
/ _ .
motion is . ' e A
: » ‘ - b ,
- d x dx
5 =8-kg.ei (25)
dt o

The physical conceptions involved suggest the substitutions

‘ | ax ., x4 (ax) ay av
g at ~ 7’ dt2 T dt \dt/ T 4t Taatss
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With these substitutions (25) becomes
» . - ‘ S
: - dv ‘
. . 3t = 8- kv.
. : . ',, . _
We have a first order differentia.l equation ‘tha.t cries out for sepa.ration of
its varia.‘bles. Separs.tion gives : \
. ] N ’
S M & f. A
! And since ' . o ' ‘ ' ' -» : -
D d ) 0
av (logfig i} kv)= By
integrating, ) - : - .
. ‘ . - . -
. S |
~ ' g log (g -kv)=t+e
and : - .
log (g - kv) -kt - kC. . ' % .

Aga.in fdling logloe = 0. 30103, ete., we have
g - kV - 'kt kC : .

.80 that transposing g and dividing by -k, we getl

=i}fgfl{e“kc. ' (26

ﬁ“

Us.ing the initial condition Vg T O when t =0, (26) glves

_B_Ll -x¢
e O=xk® - )
\so that kN . ]
. . -XC o
g=e “@
and . ‘ P
. _ B _ B -kt
: v = k k e \. . (27)

- » S dx ! ’
But since E‘E(= v,. this becomes

. dax s -kt
- , - FrRR R : (28)
Aga.in we have reduced a second—order differentia.l equa.tion to two consecutive .

first-order _egua,tions. Unfortuna.te]y this is. not always possible.
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Separating the variablés in (28) ‘ ]
. b . ! : .

N
&
-
el
=R
g

80 that o Coe S
“’ , , -kt ¢ : :
St Sy . 2 - C
: _ .x"kt+i X +C°.
_ And by the initial condition x = O when t =0, . _ "
o A . T
- ‘ =0+ . 0 o
. -
- K
. ( / " . v : .
. - _'- = C' » “ ) Lo
A .- ,
80 that S 4 | : o
- _By 58 K8 - i9) -
. X=pt+ 2 e ka,,_, N (49) -

_We have spec'ified £(t); we have /a'fomu.la for free fall with #riction. ,

Does it fit the facts? To check quantitatively is a matter for the / s
laboratory and costs time and money, 8o first check qualitatively. Often -
mtich can be checked in this way with little computation. We begin with the

obvieus question: How is our formula related to Galileo's formula for free
fall without friction s .

When there is no friction, K =0, so thet k = '0, and (29) should reduce to
dalileo 's. But we cannot substitute k = O as we ca.nnot divide by zero;
.a.nd it is difficult to see what happens when k is close to zero, We vi],\l
’have to postpone this check until the next section ( Number 5.2.2).
But (29) is derived from (27), so that it can be checked indirectly by
- checking the latter. With k- >0, as t increases e-'kt, that is ”—]'k%,
tends to zero. » ' ‘ ' R ¢ .

So that as t increases, by (27)

. _ v tends to %

Lo B

Thus there is a terminal velocity in the sense that no matter for how long the '
body is fallihg its. velocity will not exceed % A terminal velocity is con-

firmed by the experience of parachutists jumping from high altitudes -- and
has yet to be denied by those Jumpihg without chutes. Chemists observe that.
particles sinking in a strongly viscous fluid quicklyvacquire a velocity that
remains sensibly consta.nt To this small extent at least our con,jectured for-.
mile.is in accordance with the facts., - . - ”

- - Rlg

O
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'y .- Section 2. ApproximetesFormylae: Power Series \
Introduction S oot s o
. In most applications of me.thematics to scieane approximate formulae play

a role. Often 1t tu.z’ns out that the full solﬁtion is"too complicated or even
R inaccessible. When we cannot obtain the exact’ answer we myst content Lour- I
o selves with the next best thing, a good approximation. Yet the situation is
not really bs bad & as, ‘at first sight it seems. Usually, provided we are
: energetic enough to perform the labor Qf calculation, we can- obtain a numerical
answer correct to as many places of decimals as we please. Nowadays with
',_‘;‘ electrox{ic computers to do our. hard work for us, calc.ula,tion is’ no problem,
- rather the ‘proPlen is to find a computer. currently unemployed 'I'he essyéntial !
' ' tool wi h’ which increasingly exaet approximations are obtained no matter
whether driven by electronics or by brain ﬁower, is a p____ series, . No pun is -
intended . : e »
> What is a power series'Z Essentially, tﬁe éxpansion of a function of x,
say, in terms of powers of x. And what has this to do with increagingly.
better approximations to the exact value? The basic idea is illustra.ted by
e sequence of- successively better values of x. R .

. R »

;- - 3 R H " '
, _ 3.4 v ‘
A S Coo3ak1 . |
o . 3k e o
. 3.14 159 » T
) ‘ b 1592 L S S
. ' O " 3.14 159 26 ‘
' 3._il+ 159 265 ' _
, 3.1 159 2653 o L o
‘ 3.1k 159 265 35 |
(We add, parenthetically, that the're exists in French a d!l_i'ght_ful mnemonic
for xn, a _poem of which the number of letters in the . th vord is the nth
~ figure of the decima.l expansion of gx.  The first line.o_f this poem plns:'

-Que J'aime a.faire’ apprendre un nombre utile aux sages . -

.. 3.1 4 105 9 2 .6 5 3 5.) _
°To expose the idea we write our last approximation for x with a change of \ %
L
emphasis. ' ' . A
; ' ‘. ‘ i
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- . 2 3‘ 3 14 }5 o 6 7 8 Lo
~ ' L)%, o), ofL) calL) gl L)
TE3 1(10) + l“( ) + 1(10) had ?.(-19) ,‘“.9(10 * 2(10) * -6-<],O) +_5<-1o) o
o ;*_19+ Ao o e S Co
Y 3{10)" 510. . , B L
'. . ﬂm o ' i '- '.‘ " . . '»_";"4.. . ".'-’ . -"-.-
We have an approximation for o expressed as a power series »as a series of o T
. R [
poﬂrs of -]5 . To determine the first n +1 figures‘of the decimal ex- ‘ K

';-(' pansion of 7 1is to find the coefficients-f ao l’ a2, .e a - such that

.,

o . ’ . R _
> . < { 2 . ¢ 3 T Tloan o v
: 1 11 S Sl
T = + . - 4g =]~ L S te R
T = e, a (10) +a(lo) +a3<¥) ’,+..._+ an(lo). + P a
" .’I‘he *more coefficients we compute, the more accurately we determine n, by '

- . ‘o

‘ finding sufficient coeffici'ents we find o *with whatever acculacy we ?lease:‘

i\*, e

Doesn't the basic idea speek for itself? Replace the powers of 10 L ™

by powers of X And we have & function of x:

: . NS R o s
o L (x) 'lgc+@2x2-—+a3x3+...+ax JF\,.». SR S
y ‘ [N ‘ ' ' » '
In this expansion however we must be prepared to accept for the coefficientsv
2 2
8gs 815 B, sesy a‘ 'numerical values o any kind (and not only the R
: digits 0, 1, 2, .uu,. 9) ) Our optimistic con ecture is that any function of ) -

f(x), car be expanded as § power serles of ‘x sych that the more cpeffi-
cients 8y 85 8y, ...’; a, wve use, the more accurately we can determine “£(x) )
' foria.ny given numerical value of x, . . ,' o ’ ﬁ ' !
"It turns out that our optimism 1s well rewarded almost e.ll the usefu.l
ﬁxnctions can bé expanded in this way. There is ,just one complication tha‘t"' ‘ .
' computation of an extra term is to gi'\'re extra aceuracy usually mekes necessary e
V'a restriction on the numerical values of x for which the power series ex-'

- pa.nsion \will work.’ However, there are methods of circumventing this restric~ .’

tion, as we[hall presently illustrate in Numoer 5.2.1, e b ) . ', T .
“We contlude this introduction by listing a few well-known power series S ‘
expansions. . ) T - - : R k
* . . - . L E 3 ’ ' DN ' - . '
., (a) . Some expansicns ﬁthatt hold without numérical restriction on- x.. - .
, S _ : ) ] . ) .
: X X X X Lo, ,
‘. . .&,\ e =1 4+ 'F/'*' '2—, + '3—, + soe s ‘-
. r} ¢ é x5' :( ' .
S ¥ ‘ sin x =‘x’-v%+5—!-;{(—!+..: ' ,
‘ ' A : 2 xR0 i ) T
cQs8 X =tl-.—!'+’1’+—'-a+"' . ., L
" (b) Somg expansions thet require numerical rest¥iction on x. . A
. ,.: . . i ' \ ‘2 '. .
o el ,,
+ . ) \*

- - . D
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',loge(l + x? =x - % K+ % < - % xh e (-1<x {tl)j
tan “x —x-2 x3 P B (-1 <'x < 1)
. 3 52 7 \ P :
x-1 . 1{x-1]° | 1[x- 1(x-1 1y
log x =—x—+,_2(x)r-+3(x) +E(x) e \(',?‘5'>2)
o . I ~ .
. 5.2.1 Calculation of V28 . :

)

The reader will likely complain‘that our little 1list of power series omits
the best known one of all: the binomial theorem, discovered by Newton while v
'still an undergraduate at CamEridge. It is

. - 2 ‘ 3
a(a-1 -1){a-2
(1+x)®= 1+ axl—.: + agt ), ale )3(':1 )x

S« Weaid {?t list it under (a) because in certain circumstances there is a

restrichion on x; we did not list it under (b) because in certain circum-

t oeee o

> stéhces there 1s no restriction on x: it all depepds on a., If a is a
positive integer, say /n, the exact value of (l + x) for any given numerical

. value;of x can, of course, be readily calculated. The necessity to content
ourselves with an approximation doés not arise.” And since there is no neces-
sity for approximation, there is, & fortiori, no need for a restriction on
x to give successively hetter approximations. . If a is not a positive in-
teger, the expansion of (1 + x)a has no last term. And since there is no
last term we cannot sum them all by adding successive terms one ‘at a time; we
could never finish, When the exact value is inaccessible we must cohtent! ‘our-
'selves with an approximation. It turns out that the restriction for succes-
sively better numericel approximations is that X must be numerically less
than 1.

rq How is 1t that we sometimes need and sometimes do not need a‘restriction

. . .
°

on.the numerical value of X . when the expansion has no last term? Suppose

~

that we have an expansion for = of which the first four terms are
oo < . . 3, l h :&.
. ' Lo ' C lO’ 10’ 10 °

o These give. rise to the following successive approximations

: . 3, 3.1, 35, 3.1 -

The fourth approximation 1s only as good as the second and the third is worse.
In fact the third is even worse than the first. Doesn't this expansion meke it
" gbviously’ desirable for practical computation to place some restriction on the
relative size of successive terms? Ideally, we require an expansion such that R
after the first few terms-each term is only a fraction of its predecessor, 80

that later terms in the expansion can be neglected without serious error.

ﬁ:f

O
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Isn't it obvious that the SMALLER we make x in theibinomial expansion of

(1 + x)a, the'fewer terms we need take into account to get accuracy to, say,
five places of decimals? Determination of the largest x for which any given
paver series meets our requirement-is*diffieult. The complete answer is the
thegryvof convergehce. It sqffices our purpose to be told if a restriction

'on x 1is necessary, and when necessary, to be told what the restriction is.

We have already given examples with restricted x in (b) above. Tt remains

to ask: Why do some series, for example those of (a), meet our requirement

- without restriction on x? With such series our requirements are, 80 to

‘speak already built in; it so happens that no matter how large a numerical

value is given to x, a stage will be reached in the computstion after which'
each term is only & fraction Qf its'predecessor. If x ié small this stage
is resehed after a few terms; the larger x, .the later this stage and the
more 1s._bori'ous th*:putation for thé same accuracy.

We first illu te the utility of power sefies by using the binomial

" theorem to compute the cube root of 28. How are we tspapply it? Take another

.

look; it is stated above.
| 358 - (28)Y/3

80 that & =

r

wlH

. Also, 28 =1 +x, sothat x= 27ff We have'®

358 = (1 + 27)1/3.
But since a 1is not a positive integer, there is, we recall, a restriction
on X. X must be numerically less than 1, which 27, alas, is not. Earlier,
we remarked that there is sometimes & way of circumventing the restriction on
X. ; As circumventing the restriction on liquor during prohibition, it requiree
iittle ingenuity. What is an approximation to @53? Yes, a little more than -

3. Why a little more? A little morevthan 3 because 33 = 27. And doesn't
this suggest writing the following?
P P IO
= 57

¥EE - 327 14 —7).51/3 _ oft/3 (1 " ,217)1(3

80 that

1 %)i/a

Now the xiidf (1 + x)l/3 is 57 and complies with the restriction. It is

'SMALL relative to unity. This is important, so we write the word in large
.letters. Why Iimportant? Important because we can anticipate SOon.reaching

a stage where a term becomes only a SMALL fraction of its predecessox, thereby
indicating that we can obtain given accuracy with relatively little labor..
SMALL x gives the uplift of a hymn in praise of idleness.

24{}
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Anply the b?.nomial expansion with a —Fi =~ 15,' we have
1/3 1} Y
- o 1 .
I35 - 3(1 't 27) ' | )
. / 1. 1f1 ¢ 11 1 .
. A e -9y
1 1 /1
s 3
- /1y 2, 1/31 10 171
el 2 2R 2R
®
. 2 3 .
_ /1) _1f1 1
- 331 ’_“,3(27> 9(??) "+5i(27) * § -
[ 2 3 . :
) - 1) _1i(L 21
-3 (@) 3@ AR
- | o
+.0.037 037 +us .t - .
; 42
: : _ R
0.000 457 .... . | 3(27 3 )
e - : ; N 23
-f.lle.ss than o.ooo‘"010 t & 27) ‘
- 0.000 000 ... ' . ,_kthla.nd following terms, '

Isn't it Jolly? Right’from the beginning every .term is only a small fractidn .
of its predecessor, apd the farther we ‘expand the smaller the small fraction

: :',, ' becomes. Where‘ we stop .depends upon. the accuracy we- require. The third. and
succeeding t 1ms do not affect -the first 2 places of decimals, 80 that merely

“the first twg\terms gives us. /2_8_‘correct to 2 places of decimals, namely

3.03. The fourth and succeeding terms' do not affe¢t the first 3 places,‘so
~that the firgt three terms give us the cube root correct to 3 places, namely R
3. 036. Using the fourth term, the cube root is-3. 0365

The method is of course appllcable to other cube roots. For ex:

¥ - (27 + 11«&)1/3 {27(1 * 3)}1/3 271/3(1 + 3)1/3 = 3(1 +

o

Here x 1s not-ao small, -‘;: instead -2},? (18 times as big), so we can expect ‘a
1itt1e more work for the same accuracy. And we hardly need 8dd that the method
is not confined to the extracficn of cube roots. One more example will suffice
to show that the same little ingenuity still works. We consider 5/é3— What
.18 the best integral approximat;ion? ’ :

P = 243, too big. 2 = 32, mch too smell,

O
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(Since 35 is too big, W is bigger still; and 1° 1s too small.)
Without doing any more arithmetic it is clear that 3 is the best integral
'appro)qimationn 8o, we proceed thus: ’

239 = 21;3-1;_2&3(1-—11:—3):35(1_5%). - .,

A

. 5@; {35(1 _ Ellt?) 51/5 _ (35.)1/5(1 _.5111_3)1/5 _ 3( : 5%)1/5 Y.

»

" 84 that

". and the ‘stage is set for a binomial performance. .

Note that for cube roots, if x is very small,
(1 +;¢)1'/3 =1 +-1?;-x-
For example, ) . . ) ) ' S
. 3J""1' = 10(1 + 1300)1/'3_ ~ 1o<1 +jvi . _1_) ~10.03.
More generally; for very smell x . - . ' | o
(l + x) =1 + ax.
Oh.yes, ibinox‘r"li'al éxpansions have great practical importance,

5.2.2 Fall with Eciction Again h

That & man does not speculate upon the outcome of his investigation is a

sure sign that he has n& genuine interest in it. If genuinely interested _

he cannot prevent himself from forming some idea of the answer to his problem

at the outset, or, subsequently, from checking his answer when he gets one.,
Earlier, we had an idea -- a good idea, even though obvious -- for the

checking. of our free fall with friction formulae (27), (29). * When the fric-

\tional force becomes zero, the formulae for the velocity v and the displt!'ce-

ment x should reduce to Galileo's free fall formulae

4 '

r v gt

_ . 1.2 ,
R - x =38t : /
"Ptrt alternatively, when air resistance is taken into account, Galileo's formulae

o

need correction. With air resistance & falling body is retarded it does not .
fall so fast. We conjecture 8 corrective factor that diminishes “v =-- and of
" course the diminution will depend on t. We conJecture '

v

H

gt - correction

_where o . , 2

. correction = & positive ?@t%on of t.
: i ! L - ',‘ .

O
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And if a body does not' fall oo fast, it does not fall so far. Likewise, for
the displacement x, we conJecture ' ’ '
2
X = Sgt~ - correction
: o o Moo
where this correction is also a positive functich of t.

ao) L

Yes, we had a good'idea- the defect was our i?ability to apply it. Timés‘.

“have changed ; pover series gives us the ability. Now, we can handle (27), (29).
Let us do so.

- We begin with (27),l Substituting -kt' for x 1in the )xpansion for
) .

e* - given in (a) ‘ g

2.2 3,3 uu ,
, -kt Kkt k1t L
’ e =l TwtTm ET hz T (30)

) and since there is no restriction on the numerical'value of X ‘neither is

. there a restriction of * kt, Thus, no matter what tne value assigned to kt,

»

by (27) - ' : o

L - 2.2 ,.3.3 Ly
. _g_8[, _ kXKt okt k't
V—k (1 1+ 2 ‘3 3' +l+' ...).

[ ) .

Multiplying out the first two terms of the bracket we have

: 1262 343 uu : .
) ‘ /ﬁ/%”‘t ﬁ(a "}{34'c + i ')

' nd taking kt, as a Tactor ‘from this bracket
3,3
) g kt k t k-t
» \Qi . V= gt - k . kt(2 T +,—ET— - .-w)
so that ' . v . .

= gt - gtza(kt) 3(6)? + lue)? - s () >

We - have obtained a power series™ormula for - v. ,

(31) 1s interesting as well as-complicated.' It merits careful considera-
tion. First‘note that when k = O every‘term in the curly bracket is Zero,
'so that when there is no friction this fonmula;reduces to Galileo's formula

v ='gt.
lwe confirm our first anticipation.v Second. compare the power series in the
curly brack,et with the expans ion of |1 + %= 7] < given above Isn t there

a striking similarity? ‘Here we have powers, of kt instead f‘powers of é;
True (31) holds’ no matter what the magnitude of kt -- byt wouldn't it be
nice if kt weré’SMALL? Now as a matter of experimen fact k is very
small indeed, so'that kt 1is small. - And since each term of the curly bracket

is only a fraction of kt times its predecessor, with kt mich less than. 1,

. 29m
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each teim is only a,frdction of a snail fraction of its predecessor. Doesn't
this consideration invite comparison vith the fact: that each temm of
1\1/3
1 4-57 . is numerically less than'§7 of its predecessor? - What must Ve
‘conclude? That the higher powers of kt -can be neg}ected without mych loss of
precision, that ' - ' ‘
v =gt - gt Jé(lrt) + nothing

8 . A
ioe:, ' " :

12

) .V‘="8&_28t ) '

is a good approximation. The smaller. kt, the better the'approximation, of
‘course, "And ve confirm- our conjecture " L

v = gt - correction

where

correction = a positive function 6f t.

‘It is worth remarking that'even if kt, though small, were insufficiently
‘small for the .accuracy we require to neglect the second ‘and some higher powerr
of' kt, (31) would st111 confirm this conJecturs. The reason is not far to

seek, ~ Consider the terms in the curly bracket; to be paired thus s
A . .

.;,

.

| [%(kt)‘- %(kt)a:l + [ﬁ(ktp :%(kt)h]' foeef | (32)_"

Provided § <kt <3, s0 that % of, and smaller fractions of, kt are less
"than 1, ' " B

3
[E(kt)B (kt) ] l]-';kt (1‘- %) = pos—litive'quantity |

“and similarly for succeeding patrs, Thus (31) is still a positive quantity h
. and consequently the correction is still a positive function of t.

[ S(kt) - i(kt) ] = ]2-?kt 17- it) < positive quantity

- Next, in essentlally the same way, we deal with (29). Substituting (30),"

- "§'= B - 8-, &{1 y Kt + ketel- it + khth - k5t5 + 1
k R Tl 2 3t ke 5t &)

Multiplying out the first three terms of the bracket ®

: B g 3,3 bk s '
x = %t - £, & &, lgte + ;5.(-'k't' P i kifs + ...)_'

2 . IR Y]
ka.ke k .ke 3t0 bk



so that, simplifying, ' e

' 33 Wt S8 Y o
1.2 g ([ Kt kt Kt , : ;
X = 2gt +k2 ( 3lll + Il-l 5'. + .--.) . . N . i

Taking -kt . as a factor from this bracket

- - . \s
X = lgte - A, k t kt - ketz + EEEE -
_ R M TR L
. » . ;
* 80 that » 3
e 7/, 2o -«
X = gt gt 3. (kt) - (kt) =(kt)” - b (33)
Similarly, we have obtained a power series for X.
Compare (33) with (31). How much alike can two peas from the same pod
_be? Mutatis mutandis, we draw the same conclusions.- When k=0 eﬁery ’
term in the curly bracket of (33) is also zero, so that when there is'no fric-
‘tion the formula reduces to Galileo's formila ’
x=-]é:gt2 " ‘v ‘ ,' v‘
ae, interested,lwe anticipated.v Neglecting tng-secondxand~higher poweré of
.kt, we have' f _ ‘
. , ) . x= Egt gt (kt) - nothingi

ie.,

. 1.2 _ 1.3
, X = 2gt . ngt

~is a goed‘approximation (wvhen kt is smell), We confirm our.conjecture

LSRN

gt2 - correction- ' ’ o

M

- . X =

t

where the correction is a positive fUnction of t. It is left as an exeroise
for the reader to show by considering (33)'8 analogue of (32), that even if
kt is not sufficiently small for the accuracy we require to neglect the
_ earliest,higher powers of‘,kt it is still the case that the correction is
©. - positive ff 0 < kg <k
_We- cannot cleim that our formulae
v = _ %5?2 L ‘l.

LL2 1.3
~2gt gext

" are of grent practical‘imporfance. Remember that they are based on the inac- A
curate physical assumption that frictional resistance is directly proportional

.--:JL' o K) 220
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to Velecity, not to tﬁe 1.71 power of velocity: It wvas expedient for the
purposes of illustration to sacrifice physical realism to mathematical sim-
‘plicity. What 1s of great practical importance is the role of power series
in the deduction of such simple, but good,. approximations to such inherently
' complex equations as (27) and (29). »

1

5.2.3 How Deep is a Well?

_ Newton was of the opinion that the solution of word problems is necessarily
basic to anybod\y"s and everybody's mathematical education. He wrote a high
school textbook to support his contention. His vie@oint is not a mcdern one;

" 'his book is at odds with the spate of texts tna‘t currently appear-' we do well
to remember that Newton was no worse a mathematician than the best of our,
so often hasty, contemporary authors. Here we can consider only one of Newton'{
: well-wort:hwh_ile little problems.. The reader who finds an appetite for more
and has the wish, most commendable, to read Newton for himself, may be dismayed
to learn that he wrote in'Latin; in consequence, no doubt, of his country ts -
earli(er occupation by a foreign power, I hasten to add that there is an 'English
translation available: Universal Algebra, No “"educator" s or for that r{atter,‘
educator, should be licensed to banish word problems from ‘the curriculum until
he has read Newton -- in Latid, : . : -
The problem: to determine the‘depth of ‘a well. The method: 'to time ti

drop of & stone .into it. The crux: when the stone has gone - down we have to «
_wait for the sound to come up before we hear the splash. .

We assume & stone, a etop watch, a we}l -- and a prone posture. <See
Fig. 19. ‘ B - L .
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'celeration, sound has neither ac- celeration nor de- celeration. Congequently,

>

Let tl be the time taken by the stone to fali a distance x, the depth of
.the well, and let‘ t2 be the time taken by the sound of the splash to rise the'
same distance. (As usual, we idealize; we suppose water at the bottom of our
well ) The time t meaaured by our stop.watch is the interval betueen dropping

the gtone and hearing the splash, i.e., - ' . -

Co t=t) + ot . .

.With Calileo, we neglect retardation due to air resistance, so that

. ‘ 1.2 : i
] Egtl. » 1

The sound of the spldsh we suppose, as is sensibly correct, to be transmitted *

rectilinearly with unifonm velocity, say c. c is for constant and for

X ~ B
t, == ' ’ -

Given t, g, ¢ our problem is to find x. As Newton is caretul to

' explain, we have 3 unknowns, tl? te, X, ahd~3 equations, We have as many

equations as unknowns; we can hope to determine x. But we are not really

interested in t. or t,. So? Eliminate them. Fram our second eqﬁation,we

1 2
obtain o
-
l— %‘o.

Substituting for t, and t, in our first equation, . . -
t ;‘}§+’—‘. ) :
g ¢ o .

How are we to set about solving it? Take a good long look. The main
point is that it contains vx 'and x, 1. e., (%)%, We have a quadratic in®
Yx 1in & slightly disguised form. We remove the mask: _ \

g | Lme ,/;(.mm. B

Find vx and we can find x. To golve this quadratic ve have a cnoice.

.

It remains to solve for x.

—~

parrots -food formula or common sense completion of the square. The reader may
have forgotten the formula, but surely he cannot lack common sense. We complete’
the square. Before taking half the coefficient:of “Yx 1it'is convenient to
introduce a factor 2 into this coeffidlent by multiplying by jg

N

SRR z(x,>2-+e./—1-_2g(&>=t.

-

2

S e



pS—

Wé make the coefficient of (J_) unity

( )+2-7=-(f)

Half the coefficlent of vx is 7&2, We square

n

' 2
2
(R + 27 2=(F) + 5

i,e., : :
| % e
‘/}-('F'.Eg =
30 that
/¢
X ¥ ===
/ e,
and ,/
K /"/ X =

This equation is embarraesiné.“
. one value, yet our equation gives two,
the minus sign; it 18 & respcﬂsible'choice.
breath; acqyire the right'méntallhabit°
If t =0,
Yet when the negative sign 1s ‘taken,

.No,

answer in a speclal case, the depth

that the water level 1n our well is above ground.

with the + gign,

=0 1s some

t<0 givee

5

We have found VX. _
To find x we square. - S

"Our well has only one depth_,

very the data.

221

ct.

and add to both sides, '

J

2
2—g+ct

§E+Ct

. ct
28o o

23

JE' has only

We have a choice of the plus sign or

no, don't mutter under your
We aiready know the

of the well s of course 0. .

t =0 reeulte in the abeurd conclusion

We take the plus. (That

check on our algebre.)

. . c2 . 2e 2 2 .
x = o= - == ——+ct+—+ct.
‘ . - 28" 2g\2e 2g
. . | . Y . .
Simplifying slightly, 5 : ‘2 — ’
' ' : c . 2c c ’ 3
==+ ot ~ ——qJ5= + ct . (34)
- x'l"S . ,/Eg.28 B '3'.

This is & nastf; cumbersome formula,

The- 1ast term containe

us utilize our observation._
2

S+

g Wy
P t = é-é(c, -+ 2gct

g twice, each occurrence under avroot sign..

22

.Canhot we effect further simplification?, .

et
B a !
y

o

(.




.\

7 dees, %o take ;-

‘A 1little better perhaps. Wouldn't it be worthwhile to ‘buy simplification? .

 The price 18 only & small loss of precision. Isn't a gpdd approximation for-.

mula worth its cost?

Before we can expand the radical of (35) we must have it in the form
V . . N N .

‘T +x  where  -1<x<1.

Are we able to meet this rquJ.rement? %Which term of v 2 + Qgct is to ~be,c6me"
wnity? ¢ is approximately 1100 ft/sec and g approximately 32 f‘t/sece.,' o

.oe

ice., - »
and. St : . " :- ;
! & 2get <-c : ; -
: s - Co N
or : S A : . EP I
' t 2get < 1 )
. . 2 ¢ B ) i S - .
. c _ s a

" But it doesn't take 17 seconds between dropping a stone~ and hearing the splash

with ordinary cormon-or., garcfem wells, they are hot that deep by a long chalk,

'If a stone takes lh seconds to drop, by Galileo s formula it falls — « 32 . l’+

i. e., 3136 feet, so that the sound of the spls.sh 'takes less the.n 3 seconds to
come” 'up.' Our interest is in water wells, not oil wells. Tt 1s sa‘tis_f‘act;o;'y:
to us to take’ g < r‘,' ’ AT
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It.remains to manipulate the radical of (35) into the form

v l + .2-52 . . et

'\

‘ : . . .' . r,!‘wl ™ ;.:—
Jce + 2get =J (1 + _2_g_c_t_> J Jl + Jl +
80 that
‘/ + 2gct e ‘ﬁ

S ]

Hence, by. (35)

"1:1_‘ -‘:“ o Jg—v2_g + ct —“’ c' . - .. .'; .

e e e W .
and . (3&) becomes . . :
. ' 2

- . v

_ x = S+t -S-gf1 + (36) .
- o h g 8 ¢ x o
l Before expanding into ‘a’ power series we are prudggt +o assure ourselves '
that we have the correct formula to expands of cour‘p‘é ;we pannot gain a.bsolute
assurence, yet we can make a check. It Ris a physica‘:& problem. Does’(36) have
the right dimensfons? We can with proprlety take centimeter and second to be

s

our units, mass is not involved. Schematlcally, ‘ S
S . .
e HX = ' t = sec
VR
v ) . ) AN | -2
the velocity -c = cni .-._-rsee‘;’ oy - the acceleration— & = cm s Sec .
g C K -
So, schematically (36) become$ _ Tre—
2 -2 - 2 -2 :
. ‘cm- . sec . amn-l cm_ .« sec '
om = ————— + (¢m - sec ")sec - ————5
' em ¢ sec em ¢ ‘sec .
cem + cm - -cm V1.4
- T ;
em + cm-cm -0, L
(S .
8 } .
cm, 4 ‘ bRy
. L] S

that f a pure number, ,1s of zZero dimensions.a.,T):Lmensionally, our

equation is correct. We proceed with some confidence. A

, It is a good mental habit to @ticipa‘ce the outcome of a procedure. What
result do we expect power series’*éxpausion ;to give? If the spla.sh were heard
when it occurred x would be given by Galileo s meula

R 2

O
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Fuller appreciation. of. the physical circumstances enables us’ to be more pre-
N nl
T ciae. 'The time t is shared between stone and sound Since the stone ’

” doesn't fa.ll for so I:ong ag. t - it doesn't, fall so far as gt The corred- "

. tion nmst be negative.h ‘On"these occasions .when we can see as well as hear‘thaz
gplash we know bight ana sound to be almost instantaneous. The stone takes '
the 1ion's sh‘are of' t.A The negative correction will be small.

, ; °‘ !Cnoving what to. expect we  proceed.  With & = %, the binomial theorem

et . O o : .

‘.... gives . . . . L . i bt “ . ‘ 3
" BN "Ll .y,L
. #2 S l ( '1)( -\2)( "3) )+ v
(1+x) =1 +,2.+. + h' S + e
: ‘ ': 1 .21 6 '
R ;» . .'-—- l+§'x- . \ mx + e g
Ta.king X = —E to obtain the exﬂ&nsi‘on of 41 + géﬁ S
. : Y .‘- ' . [
(3‘6) ‘becomes o - t - Ceoe
R I i N 1fom)2 3] T N
g e S o) L Lfeat) | oxfeed)” , 1 (2m\ | s fom 28t
‘ x.\-‘. g+_et g il+2(c) E(c")f +T6( e/ E%E c *'2%'6 c d
S Q :- . SN . |
ﬁiﬂying out the firat three terms of the bra.cket we have . 5.
L : 2 ‘:':’.." "& “\5
82 Bt , _ﬁ Zn(2at) ., L feet)
: L-— 1+ ot - = - + - & vt
B R °.’.°' | B, < |
-.7‘ m( c’) -\:l-‘.... s . . R | . ‘ o ~.
| simpl,ifying, " | ey
. : 2gt)’
' Lk )‘1 ﬁ( ) ) -




ko t;at'" N é’ o “.r‘;_ "i, i o I
R T R I

This equation is rather similar tp (33) To emphasize this similarity Ve ab-
BOI‘b the fac¢tor h in thé curly bracket giving : v

?;":;" U ' 3 N ) 1& R A y .

It is instructive to compare. (37) with (33) ‘I‘o facilitate comparison we' 'l
repeat (33) 0 L0 L w e
L g ' . ‘ T
rx»=.§gte;- gt ?—ﬁ(k_t) gy (k)% 42 (kt)3 g-(kt)“ f

- Wk P '
.

It's rathe:: like meeting an old girl friend with a nev hairdo. T’he ‘now;elty
lies within the curly bracket. First We note a different sequence: o;‘ coeff.i-

cients’ 1]: 32, 7,4 vee instead of ?-, n—, 5,, g—, vee}. yet the new ,
nce continually decreases as does the old. necond we note powers ‘of

-E- instead of powers of  (kt), yet the povers, tkhems.eiv&s are the same.
And isn't I‘ne small que.ntity as gsod“ ae.a.nother, éo itp ‘speak? And what do we, .
conclude?a ‘l!hat it's the same old éirl f;riend. ‘That the numerical ve.lue of". .
'R
. the curly breﬂcket in (37) is positivé i’br small 25&) , confirming our _expect'a-;
-z tion o p ’ . [ . A DR ¢ . :
e by '= L 2. (positive correction) L v -. - o °
> . ' ?t X (";. ' .
] ’ K . o "’ ne - '5" 5, ‘. “ ' .v "~ N
. That we may with little less of precision neglect the Second and higher powers
. of (20 ' sp. that : Se ' ‘ : e &
S B e e insi A
. : : c } . . T IR . .
" . ; o :
Lo S . - _l
. .-:'jh“Isn't it astonishing that two distinctly different physical prdblems, ‘

~ that. of free fall with friction and that of the _depth of a w,gll ’ should have
such similar solutions? ‘Their similarity bears testimony to the usefulness
of power series Let us be prepareci to meet mathema.tics that with trivial
change of de‘tail affords solution to p,rohlems from v;astly different areas of.

N

physics. B o

. N . . v ) .‘\ : Ty, " R Lo . .
“ s . X . ] o o N . o . Coee o,

[
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5.2k Pendvlum Small Oscillétions, %
Earlier, assuming that . T (tne full period of oscillation of a simple

pendulum) is & function of £ (the pemdulum s length) and g (the gravitational

constant), we were able to show, merely by dimensional considerations, that

T'= CJ’Z ' I". i \lf
& LA

v ] s
where ¢ 1is independent'of £ and of g. That we could do so much with so
1itt1e is astonishing. That we could not show = 2x %y such 1imited means

\is not astonishing. However, we now have the means: namely, that mathematical
method in science which formulates the condition as a differential equation.
Tet us, without further ado, use it.

What' is the condition upon which the osc1llation of a pendulum depends?
Not 80 fast; we had better walk before we run, First ask: What fprce_cansesf '
the acceleration? Consider Fig. 20(a). o ey

. '
Figure 20(a) »

o e ey ’
S .

The only forcé& aoting on the bob B, bfipoint mass m (say), are theiqgward
tension. T "in the.ﬁtring and mg vertically downward due to gravity. So?
The accelerating force acting on B must be R, the resyltant of these two.
What i8 R7 A ,convenient alternative to using a; vector parallelogram of
ﬁorces'is to resolve ng "into two components, the one collinear with, and

the other perpendicular to, the string. See Fig. 20(b).

O
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. s | Figure 20(b)
Since the, string is inextensible and remains taut, the component part of mg
. represenbed by BQ must be equal and oppoSite to the tension T, Consequently
the component of mg - perpendicular to the string, represented by E?' (P is
for.PegBendicular), must be the resultant R. From the obvious geometry of
the figure, 'ZGBQ = ¢, the angle made by NB with the vertical NO. And BP
is pex;éndicular to BQ. Thefefore\ ' H

u

-~
-

ﬁ.' " R=mg - sin ¢ ': B (38).

We have found the accelerating force acting on the bob.
What is a, the bob's*acceleration? Not so fast; walk. First ask:
. what is its velocity? See Fig. 21. ' '

ERIC
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If in time At the string turns through an increase of angle Ad, the bob

‘moves along an arc 1ength z AP, 8o that its average veloclty during this

time 18 ﬂg-‘ Hence, mindful of Lelbnitz, we have that its instantaneous
d¢

w}elpcity is zd—ﬁ ‘ But e.cceleration is rate of change of velocity,v so that

__d_{zd_¢} d/dtD) Lo

=T = Z-—\dt z— B - ’ (39)

C
We have found the bdb's acceleration.

P

What s the relation between acceleratidn and accelerating 'force?. Yes,

l

., mass x’ecceleration = a?ccelerating force.

But be clear that ft is incorrect to write
- A . : o .
y, ‘mxa=R. . "

We have measured a along the arc in the direction of increesing ¢ and R_'

in the opposite direction. ‘We must memsure both in the same direction, "I'he

' accelerating force in the direction of increasing ¢ 18 =R; we have

mXa = =R,

Substituting (39), (38), S )

R ‘
. 'mz-—e- = -mg sin ¢
dt : S A
so that U I (
' d2¢ g
—=c5 sin 6. : (40)+
¢ dt.

‘We have found the differential ¢quation upon which the pendulum's oscillaticn

is conditional.
-

We have yet to assign initial or. boundary conditions to, this differential‘
equation, See Fig, 22,

n
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We have taken the pendulum NB "to be.at an angle ¢ +to its central position o
NO (where B is vertically below the nail N) at time t. When is the bob,
at 07 It is obviously convenient to start timing the swinging pendulum from
'when it is in this central position. Since this is the time when we initiate
meafurements, '
b when t =0, ¢ =0 '_ (1);“

]
-

. is appropriately-sald to be an initial condition. We afe agreed when our in-
terest in the swinging pendulum begins. When does our.interest end? At the
end of & quarter swing, when the bob 'is at A; for obviously the time for
the bob to swing from O to A 1is a quarter of the fime T fo}.arcorplete
 oscillation from O to A to O to A' to ‘0., Thus we are led fu ask:
What is the value of ¢ when t = %T and the bob is at A? This, the greatest
" value of ¢, is said to be the am plitude of the oscillation. Let us call it

a. So. we have,

_when t = %T, ¢ =nq,

But, is this ponditioﬁ genuinely 1nfor;at1ve? - Would we be any the wiser if

we had called the amplitude B8 instead of a? The giving of & name to

the ampIitudg'does'not tell us anything about the ampiitudekitselfx We are

mindful of the story, possibly apocryphal, of the student who said, "Yes, yes,

I understand how you determined the mass of Jupiter. What puzzles me is how
—~yourfoundrout-its name-JL~¥Es——yes-we—have—named—the—amplitude’*the_importanf‘**————

thing is to characterize it." This 45 a duestion of physics, not lenguage.

When the bbb reéches "A it is at the end of an oscillation; it is instan-

taneougly at rest:

o ’ ' v ao

d
”EE =0, | ] and conseguently, at - 0.
Thus, we have,’ :
. vhen t.=$T, d=q, -0, . (11)

Because this condition holds when the bob reaches an end or boﬁndary of its
'path, it is appropriately termed a boundary condition. Although A is a
terminus, terminal condition i8 not accepted usage.* ‘

v

Now we are able to state the completq mathematicul fo§mulation of our
problem: .

-

(4

Given (L40), (1), (ii), Find T.

R36
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Two points arise; each has a bearing on the other. The first, that solution
belies brevity of formulation. As well as long, it is difficult. There are
far too many mathematical difficulties for us. Exact sbiution involves an

.elliptic function, a variety distinct from the usual exponential, trigonome-

trie, logarithmic,'and algebraic expansi?ns{ Anticlimax. What are we to dd?
No, no, it's no use muttering, Abnﬁe ail, we must retain the right mental
attitude. We cannot solve our problem;'can we solve a simplified version? .
Simplicity is worth buying if we do not have to _pay too great a loss of pre-
eision for it. The sensible thing to do is the next best thing: to se

good approximation., Approximation? ApproximatiOn suggests power'seri 5 ex-~

This brings us to the second point. What sort of solution does (HO) B
Sinée‘this equatidn.eontains a'(second) derivative of ¢ with respect to t,
we anticipate the solution to be an equation giving ¢. as a function of t
(and involving the constants £, g), i.e., of the fonm ‘

o = f(t; £ 8). B (hl):

" Alternatively, consider the problem from the other end, ~Differentiating (41)
- with respect to t, schematically, e R

PR
B R

SR
ANt

a6 ' Do
= =r'(t, £, g). N

dt

~

Differentiating again with respect tb t“ . . ¢

i

Either vay Vd éome to the conclusion thht'the solution is of the sort described
by (%l) Substituting the boundary condition (ii) in it, we have
. 1

Q= f(ET: £, 8)
i.e., that o 1is given in terms of %T, £, and g, Hence, making T the
subject of the fbrmula, we expect T to be given in terms of £, g, and q.
Schematically, ' ‘

T =F(4; 8, a)-

[ "

* Yet, earlier, we concluded in consequence of dimensional congiderations that



O
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‘vhere c is & constant (actually 2r). This conclusion, put schematically, is

Qe T cannot both be and not be’ independent of q.. A dilemme confronts us.

%
.

~T =. F(ﬂ) S)."

N v

We concluded T to be & function of 4 and g without being a funqtion,of

Overccming our despondency, we think again. The'formulaw:'

- 3T = c‘[— ”~,', : - T

was obtained by dimensional conslderations on the assumption that T is
dependent upon "( ONLY) £ and' g. True we did not explicitly use the word only

true we did not explicitly state T to be independent of a,,,but an implicit

o assumption is nevertheless an assumptién{ “'VWe. cannot quarrel with our conclue~
. sion Peing consistent with 1ts premises. S0 the real question is: What about
- our premises? Is ‘p in fact independent of a or'not? Ye mist resort to the

final 'arbiter, experiment. ' - i
What 1s experiment's verdict? For large a° it is found that ‘T is not
independent of a. When, for example, a pendulum’ swings with an amplitude of
60° its period is appreciably less than when. it swings with an amplitude of
90 . But when- o is =small, say less than 10° , there is no sensible difference
‘in the periods of oscillation. When a pendulum does not swing so ‘far it'does

.not swing so fast; decrease in arc and acceleration are compensating factors.

~ that tend to annul one another: the smaller Q, "the greater their annulment

"sin ¢. We take o o - ..

and the smaller the change in T; the greater‘ Q, the smaller'their,annulment
and the greafer the change in. T.j What are we t0 conclude? That although to
be exact T 1is a function of a (as well as of & and g), if a is small
its effect may be sensibly neglected. .

Smell a? What about a¢? Since a 1is the greatest value of ¢, when
a 1is small, ¢ must be small. Small ¢? The very thing for a good approxi-

mation from an expansion in powers of ¢. And what has an expansion in powers
of 6?7 TLook at list (a) sbove. Yes, sin ¢ and cos 6. But (40) prefers )

This expansion holds for any value of o, measured in radians. - If«it is not
already obvious that for small values of ¢ the third and higher powers of ¢

‘cén be neglected with little loss of accuracy, then -an example will make it
obvious. Take ¢ = 10°.

‘238
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Since 180% = % . (¢ is fo{- circular measure, radians) .
! o x° i ,
Cn . . 10. =18 = 0'.1?’{5,5.- p
so that o : ' : 3 5
sin 10° = 0.1745... -'@175‘65'“) + (0'171'*250"') - ...

=0.17¥... ~ 0.00088... + 0,0000013... - ... .

We vonclude that for small ¢ -
8in ¢ = ¢ \

with 1:"“good accuracy.

Let us now use geometry to echo arithmetic, Tt is convenient to consider
the -chord and arc of & unit circle subtended by & small angle o° and its
mirror image. See Fig., 23. ‘ i o '

. |3 , .‘n Y
N . . . . . L ] . ) .
‘ From the obvious geometry - Lo ' -
£y N . . .o - N
B'0 . OB o, .
Bin ¢ = =7 ' - .
‘8o that o v 4 ! o
. . .
2 sin ¢ = B'O + OB = chord B'B. o '
. . . y
A %l 3 . .
e &

2y
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u} B .. . . .

"While since ¢ is measured ixf'radians,

. angle X radius = arc . ¢

1.e,, -
26 X 1 = arc B'B.
k)
But, for small ¢ SR .
K" o S chord B'B = arc B'B -
go that
E 2 gin ¢ '
. . /
and . . : [
o - . i >
A / ’
. sin ¢ = ¢,

?

'the more nearly equav,chord and arc} conseQuently the more
nearly equal sin ¢ and o. p ' ‘
We conclude that’for sufficiently small ¢

. -
R i“e .
’ R w2 % ¢
, G ' . T dt '

(k2)

"

e o ) &

Ll
~

4

Consequently o S

is & good approximation:to (40). In consequence we are disposedtto:think that
the solution to (42) will be a good approximation to the solution to .(40).
accept (42) as a substitute for (40) is a responsible decision; some error
must be involved. How big an error?. The proof of the pudding 1is the eating
thereof; the best . check is to compare the consequences of our simplified
equation with the experimental facts. Butxbefore we can compare the conse-
. quences we have to deduce them.

How are we to solve our second-order differential equation? Yes, we try
to reduce it to & first order equation., And what substitution do we meke?-
“One appropriate to. the physidal situation.

pendulum, rate of swing- is‘an angular velocity, isn't 1t7 So? We put

Our concern is the swing of a

(b3)

»,
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ke .
23k

and .(142) becomés i
. v..;’ : . . s e - »
a 0 - -5 . ~ .
. P ‘¢. . __ (44)

g

.

[o7]

t

First order? Or should we say "first disorder"? ' For we have three variebles,
" w, t, and ¢, Two is company, three is a crowd, Who, ‘to use a current

mﬂ.gai‘ity, is to get lost? Cogsider

" Is dw, dt, qr' 'd¢ to £ill both parenthéses? Try them. ‘d¢ gives
| a_de & W,
Tdat T at  as
- Using (43) - .
‘ % : © - %

80 that (44) becomes
| | . _E . g3 |
w a6 = 7} 6 C (LLS)‘.

t gets 1651;. "We have a first-order differential equatiown,

Néxﬁ, of course we separate the variables., (45) give : .
{w- dw=-%j¢'- do. : e

%w2=_% --]2-:4)2.4- c.

Integrating,

W
!

Using part of -boundary condition (1i), ¢ =aq,, %% =w=0
__E. L2
O0=-%" 3% *ec- o
c=3&%
=33 ‘
and ‘ _ _
) 12 1g,2 _ 2
g =gy la -0 ).

241 —




( He;rce, using (hj—)ﬁagéin K

A, ‘ i . ' ".‘/
and o ' Ao
. Fule
vag
. at
We”héve a second fiyst-order differential equation. . PR
As 8 mere matter of routine we sepﬁrate theAvaria‘bles. It remains to
integrate T ' . . \ |
A » | ) J‘ﬁ . {;Jdt. ) .‘.T»'.:q . (’4-7)
_ Yoo - ¢ : -
. The left-hand side is & little awkward. s | o
N . “ ) ) ] E . ) '{‘.‘\. M
< 2 ! Ly
‘ 2., 2 2 ¢
)
. - a , a 31 (a
~ so.that ‘ ‘ ) '
} 2 2 ¢
a ¢ =qael (a)
> o ~ *
and

1]
%
[o7)
1 o
o
N
n
Q
}_J
1 o
-y
P .
\o
e
l
e,
}_J
1 I~
R [o7)
le =3
e’
(M)

B, L

! l d¢ = d(g)
[0} Q —
-~ M ~
so, finally = . : ® : ,,MN. .
j ydo _J d(a)
J2_ 2 : . ‘ ’
’ a - ¢ 1 - 2) .
. S . . ol -
" which 1s of the form » Y : :
] , r
o R '[ ax ' .
o . R ) i "l - }'CE .
where .
¢ , (
X ==.
. .
“ ‘ . . )
242
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| g
Thus (47) gives

_—

I ‘ sin-].'(g): = JE ot +'_c'.

nn,the right. B

where the arbitrary constant of 't:he left~hand side has been absorbed intd that

'I'hough not essential to the determination of Tit is useful t\o have an
explicit formtﬂa for o,
tion between s;Ln

£

How do we get rid of arcsine or sin” ? 'I'he rela-

or arcsine of and sine of is analogous to the relation
between father‘ of and son of. Both are inverse re1atio%\f

r""
e
A, . V
~
s

R
cup®

. L

\

\

S 9
i . . \
s'o;'that ’

®=q. gin gﬁ- t +.c'z. ' (48)
It remains ‘to determine the aroitrary constant
" that we do not use th,e same condition twice.

tuting in (h8),

¥ ."'i.:- i-
The’main point here ‘is
We have used the boundary condi-
tion;. we ?ow‘use the- initial condition, (1), that ¢$=0 when t = 0. Substi- !
it | : O=q .« sin {0+c').
PR . o




We-have obta.ined a‘n explicit fornmle. for’ -;tb. Cow : T e
~ Fnelly, ve e.re_ able o determine T. See Fig. a2 a.ge.in. Beca.use the
pendulum is timed. fzfo its centra.l position, -E'l‘ is the first time at which
the beb coincides wi‘bh‘ A i.e., n‘I‘ is the lee.st va.lue of t - for which | -

%= q. Consequently, dg ET is the lee.st va.lue of J—%' t for which

¢ = q. What are these values?. Puttitg ¢ = o in (11-9),‘we have

P

Q
I

Q

.o
. B

h%q;

.t

-

~

Thus the ledst is ‘Therefore,

S o
and

We have solved the simplified versipn of our problem.‘,,‘- o X ,
K And nowv the;, crucial question? does ‘the substitution of,(ha) for (ho) .
result in serious e;'ror? No, it does.not. With o <-10 'there is r?b sensible _
difference between the predictions of (50) a.nd the resul‘ts ‘of experiment. Our -
simplifice.tion has a.mple Justification. -

" Remember that

ek, o) ] .
' has the solution - . Lo .- R o » .. AR
- ) o : o ¢’.;"a sin {J-%_t} . . (11-9) ) o
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It is important. Important for a varietyiof'reasons. The vibrations of
tuging forks, elastic bodies, and even certain electiical phenomena are also
.-conditional upon (h2) CIn consequence (49) is known as the Aguation of’ small
Y oscillations. You mst surely meet’ it in- physics.‘ ; . H :]" v,

' -
. N CL e

ST ' ) Section'3 Fhysical Analogy - R e

B , R . . ‘.

- The first stage of our success in solving physieal problems has been the
8! formulation of the appropriate condition as a* differential equation with an N

initial condition the secOnd, the solving of the equation subjéct to its
initial condition. On one occasion we were unsuccessful, we could not deter-
mine- the*period for a pendulum with large oscillations. We may reflect that ',
_the limiting factor to. our suocess lay in the second stage rather than the Gi
'first. Even if without the Scots? proverbial thrift the difficulty of solving
_ differential equations is an 1ncentive to us1ng them parsimoniously. Happily

] f;l:“ here is % cOmmodity of which a. 1ittle may be made to gq 8 long way. .I have { )

-alréady made brief mention that the equation of small oscillations of & pendu- ‘

. 'lum also holds for other vibrational phenomena. In. investigating sWingjng penvfd
[ 4__dulums ve were, albeit unwittingly, also investigating vibrating tuning forks.
« . Is this a straw which" shOws which way the~yind blows? Do other differential ¢
equations THave multiple Uses?. we have the 1hcentive “to” find out. ;
: Lt We concern ourselves w1th the application of a. previous result to electri- N
rcity.» In Number 5,1 i, Fell with Friction, we showed thatvthe differential "
' equation R S ' ‘
‘ ERNEE o 2

4% _ g -
'_',dt»2' :

with the initial condition ;
' ) dx

when t = O, X = O, dt » .

L (ev) p
It would seem improbable that this information could be of any interest whatso-'
‘ever to the electrical engineer. Nowadays with. Telstars in regular use, inter-

-Continental ballistic missiles ready for immediate use, and electronic computers

rapidly becoming as numerpus as typewriting machines, the reader will occasion
" no surprise when told thatvthe study of electricity has become a most exact'
; 'b"science. What, for goodness' sake, qan .an approximat condition for the fall
- of a body, dead or alive, from a hot-air balloon ‘have %o do with su&h an exact '
rfw science? Life is full of surprises our approximate-conditﬁon for the” fall of ;

‘,f .av'
RN : o~ ." A . . . \
. ' ! - ‘ ~ Lo . el e
. . . Yool . : RN

L
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a. body through a resis‘ting medium is precisely analogous to the exact condition ’
for the 1’,l.ow qf an electric crurrent through a resisting wire. R

{I'o be strictly correct there is: a precise %nalo@ when (25) is expressed
in a. fully exp}.icit form. To gain that brevity of notation 80 convenient to R
forma.l ma.nipulation we obtained (25) W dividing thmugh by -m and subsequently
p substittrtins k fPér g To rega.in explicit reference to m we employ the “ _"'

reverse procedu.res in rqverse order, the'.’reby obta.ining e~ T e
L] -0 R
v ,“. e . . . Q o . -?> i ‘
- . e S '.dex' ' . ' S
. SR [ m:—E-mg-Kdt. - AL .
. .. dt ] .‘ - - } 9 ,3 N
And finglly, since by definition . o P -
R _tl.~ v—'d—k ., s : B R _-.,:‘
Core e e e e L, VT g X
T " e
T ST R S Ry
and comsequently . T T o / SN R S
T - b at? - S
ve ﬁay with brevity' but wit’hout #%1 1osd of explicitness ool -
IR O R U SR
" Cd ’ -"i ';;,,, ' D-( - PRI * . _7 N ln 'i .
o o ,="m8"'KV-_ -'(25’) .
Los ek T ' EERRE ’ » - .
- :This s the ferm most convenient to making an analogy with the "ea11" "i.e.'v, ;. T
flo‘w‘;’ of an elettrig current. ) v e, oo A S
P Since (251) is explicit the’ ingredients of the equivalent equation (2‘5) .
é.re now visibly obvious na.mely, An order from llet to right mass m, - velocit;y‘ V.\
) %, gravitational force e, ‘and velocity V. What are their electrical . e
'counterpa._rts? See Fig,. 2k, B et - oo 4 .
* N PR ‘k ot LR e R ’ [
l} » " l' l . . .. ..
R : ;" s Circuit., Switch :
: .; . . ’ - .
L . A ;| e ’ -
Induction \ ‘ - “ .
. Coil ’ ‘ ‘
I \1 N . evv 'I ‘
’> ; ‘ * L - ‘ ‘'
.t T e R ST R s
SN : B I : ‘ Y

O
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To press the switch,‘to allow a current to start' flowing is the analogue of

‘op‘ening the .fingers, to allow & body ta st'art“ fallin.g.' The fall 'of the body '

is’ caused by the‘i‘orce mg due to gravity, the f'low of the current is caused

by the electric force or tension E due to the battery. [’]!he falling body has

i ~ to overcome the frictional resistance of the air, the flowing current has to .
overcome the electrical resistance of the wire. Aivr resistance is proportional
to the body's velocity' v;. electrical resistance is- propoi‘bipnal to ‘the cug- -
rent's- ‘intensity ‘i. And- qonsequently rate of change of veJ,ocity gl’ cdorres-

ponds to rate of change of intensity gi‘ We tabulate these analogues. R

means a logou to. _ . I .
i ] " Analogy * ] * .
‘ Electrdcal o ' ) . f_gys.ical.'
" Electric tension . o B ~mg Gravitational force .
Intensity of flowing current ™ 1 M . Velocity of falling body
Rate of chg.nge of intensity ' %—-ti-,\~ %—-E - Rate of change of. velocity '
’ ’ ' g . 7 ~m Mass of body

We are confronted with a blank on the left- han’d side. What is the analogue of -
mass? The. electromagnetic 1nduction L. opposes change of current so that a
" current cannot be quite instantaneously tarted or stopped. And doesn't the -
inertia or mass m Of a body tend to’ maie it 80 op forever without increasing
/ or decreasing its “motion? Isn’t l_‘ so to speak, an electromagnetic inertia.
‘ ye complete our list W ’

’ LA XS .
. [
Vi

; Ly . . ° - ‘ o %
Self-induction - - - - L ~m Inert mass - o p

Syt ) i ;:).-

Having found what are™ more Or less plausible analogues we substitute them —
v .. in (25') and obtain ¢ . A . ¢

] i,
al b

_, « L %= E- K.
. . .
« ,.;r',';.- - There is one small blern'ish.E K the afri_‘ctiona_l factor is now associated with
1 instead. of with v; speaking strictly; it 'be;é’omes'an electric resistance

factor; Therefo.re it is more appropriate and indeed customary in textbooks -

-(, i of electricity to call this factor r (for reﬁistance, of course) With
' the substitution of r for K (25') finally becomes - . »
3 BN ! V .
h - La'f'—'E“ ri - _ - (M)
. S .

O
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: énd our analogy is Complete: Tidy minded we finish our tebulation.

*

' - Analogy

¥ . . .
Electric reslstance factor ~~ K Frictional‘factor .

Hﬁving found &n anelogy, or to modérate ouf claim, having found what we.
conjecture to be & Bound:analqu, we hasten to ﬁse'it. The first steﬁ is to-
-afply to. the initial condition and consequence Bf (25) the notational changes
that we applied to (25) to give us theexplicitness of (25'). The initial
condition is , SR |

. when t=o,x=o,g—f§_o;
this becomes,
»% when t ='p, x=0, v=0. L o

. " ’ .
And puttfMe X for k in (27), the consequent of (25), ve have

v =281 - o~(K/m)ty (211)
In ghdrt, the Tesult of our investigation of free fall with friction may
be expressed: ; _ : : Lo
~_-»If & phenomenon satisfies

- \

5

5 R  @%% = ﬁg'- Kv ' .,“(25').
_ w£th the initiel condition ..ﬂ’. d "
- ‘ L t=0,%x=0,v=0
B bﬁer.x_ it ,se;:c‘isfies : s w ﬂ_w_"‘_;mw#_w
| v -2 - 9, | ‘,(zr')

The road is Now clear to speed to the conséquence of our analogy.. With

-

-~ the ‘paired counterParts set before us thls:

i T dV‘
nx ng . K - v .
. $ A AN A
| v ¥ YooV
i L_ a E r i
dt _
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we can immediately write:
- If a phenomenon satisfies.

L-g-n | : (z5") -

"with the initial condition

then it satisfies ' : o ' .

1S ~

.
/ .

A trivial point: x =0 haé no counterpart;'being,éxtraneous 1t 1s cast
aslde’ without éoﬁplaint. It is a lack of relevant, nbt_a surplus of irrele-
vant, inf?%mation vwhich wouldrbe a cause for dissatisfaction,

, It remgins to ask the vitél question: Is our analogy sownd? It is, And
what are our grounds for this assertion?. As ever, experiment is the final
arbiter. '(2?") accords with the result of'expeiiment; consequently, we ac-
cept (25"). S . o

Earlier (using the less explicit notation) we showed that when % t 1is

large (27') gives ~ : o . . .
. .

v~ o

i.e., a falling body acquiregra‘términa} or-s%eady velocity. We must anticipéte

an analogous result f

(27") gives

flow of an electric current., When Eﬁ is large

;

“1.e., 8 flowgggrcurrent aéquires a tgrminal or'steady intensity. Here 1s

ERIC
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Ohm's Lew, known to evenx,schoolboy. We have additional grounds for accépting'

(25") and for the soundness of our analogy . EE ' ;

6f cou?se analogy 1s often misleading. Its iﬁportgnce is that it iBioften
_helpful, That we cannot glve other examples of its roié in finding new inter-
pretations of old equations 1is :lack ofltime; not material, Differentisl equa*-

tions.are povwerful for thelr name is legion;and they spesk with many tongues.
) ) . ¢ . ) .



